• ベストアンサー

位相幾何学の学習に適した書籍

位相幾何の学習を1から始めるにあたって,最も適した書籍を教えてください. 私が現在持っている参考書は 定義→定理→証明→定理→証明→・・・ のように構成されていますが,あまりに内容が無機質すぎて理解に貢献してくれません.そこで,何か良い参考書はないかと思い,今回の質問に至りました. 現代数学に通用する内容の書籍であれば,古いものでも構いません.

質問者が選んだベストアンサー

  • ベストアンサー
  • Ae610
  • ベストアンサー率25% (385/1500)
回答No.1

「トポロジー」(基礎と方法) 野口廣 著 (ちくま学芸文庫) ・・・辺りは如何・・!? (質問者が数学専攻者で、既に知っているという事であればご容赦!!)

TTZULO5MX6YWS86
質問者

お礼

図書館で探して読んでみましたが, 確かに,非常に分かりやすく面白い本でした. 回答ありがとうございました.

関連するQ&A

  • 高校で平面・立体幾何を学習する意味

    高校で平面幾何、立体幾何を学習する意味がよくわかりません。 カリキュラム的には、解析幾何やベクトルへのつなぎ、代数幾何や証明の訓練にしか見えませんし、 日常生活で、高校で学習する幾何的知識を使うシーンもまず思い当たりません。 (三角比なんてのは三角関数のところで学べば済むことです。) 幾何学から更に発展する学問もほとんど思い当たりません。 地学・天文学が少し使うくらいでしょうか。解析幾何と代数幾何で事足りる気がします。 大学で数学を専門に学んではいませんが平面・立体幾何の講義などほとんどなく、位相幾何を学びに行くと聞きました。 となると、色んな証明を駆使して修得する平面幾何の知識とは、何するものぞ…ということになります。 (むしろ、数学史という特殊な一学問の知識を習得しているような気がします。) ・カリキュラム的意図 ・実用的意図 ・学問的意図 について、見識をお持ちの方がいらっしゃいましたら、ご教授願います。

  • 位相 初心者です。

    「AとBが位相空間Xの開集合ならば、A×Bは直積位相空間X^2の 開集合である。」 上記の内容は、定義ですか、それとも定理ですか。 定理であれば、証明の考え方を教えてください。

  • ユークリッド幾何学にまつわる不完全性定理的理解について

    ユークリッド幾何学にまつわる不完全性定理的理解について ゲーデルの不完全性定理の対象となる数学は『公理系Nが無矛盾である』が前提です。ユークリッド幾何学は 一階述語論理で表されることが出来る自然数の部分集合であって、ゲーデルの不完全性定理の対象である 公理Nの無矛盾である 論理の対象になってないとなり それ以上のユークリッド幾何学の論理的理解が進みません。そこでゲーデル理解を拡張して『公理系Nが無矛盾ではない』として不完全性定理を理解すると(須田隆良氏、中西章氏など) (1)ゲーデルの第一不完全性定理の解釈==>公理系Nが無矛盾であろうがなかろうが 公理系Nにおいて、「公理系Nにおいて命題は証明可能である。」という命題も、「公理系Nにおいて命題は証明不可能である。」という命題も証明不可能である (2)第2不完全性定理の解釈==>公理系Nが無矛盾であろうがなかろうが その無矛盾性を証明できない となります。これらはゲーデル不完全性対象から外れておりますが、対象外のユークリッド幾何学を理解するには都合がよい と思うのです。 (2)によりユークリッド幾何学の公理の無矛盾性は証明できない。 (1)によりユークリッド幾何学の未定義領域(非ユークリッド幾何学、虚数、無限遠点とか)は 公理系Nにふくまれ 多くの証明できない命題があることになります。もちろん 公理定義内では完全性理論は保証されています。 なぜ このようなユークリッド幾何学に こだわる かと申しますと 世の中の 論理(数学、哲学、論理を用いた論文 など)は ユークリッド幾何学的なものが 圧倒的に多いと思うのです。これら論文は ほとんどは一階述語理論で表され かつ ゲーデル不完全性定理 対象論理ではないのです。それら論文の特に(2)に関わる自己証明は出来ない ということは重要であると思うのです。もちろん 自己証明が出来ないと言って間違いとはなりません が 常に 冷静に謙虚に 主張理論の原点を見直すことに 繋がっていると思うのです。勿論、論理構成が出来ていないシロモノは 論外であります。    以上のように理解しているのですが、ユークリッド幾何学にまつわるゲーデル不完全性定理の場外理解は問題ないでしょうか。諸先生のコメント頂けましたら幸甚です。

  • 初等幾何の参考書

    高校以下で習う初等幾何について体系的に書かれている参考書のタイトルをいくつか、できれば特徴を添えて教えて下さい。 ネットや書店で探してみても、幾何というタイトルが入ったものが見当たらないのですが、数学Aというものがそうなのでしょうか?数学Aは初等幾何の内容をすべて含んだものですか? ちなみにここでいう初等幾何とは、3次元以下(2次元でも可)のユークリッド空間に関する幾何学で、補助線などを用いて長さや角度を求めたり、ユークリッドの公理系から様々な定理を証明するものであって、座標などの解析幾何的な手法やベクトルなどの手法を用いないもの全般とします。

  • 私が知りたいのは ゲーデルの不完全性定理の幾何学での理解です。

    私が知りたいのは ゲーデルの不完全性定理の幾何学での理解です。 (1)第2不完全性定理では 次の表現があり『公理系Nにおいて、その無矛盾性を証明することは不可能である』、そのなかで問題として『 真であるが証明不可能な主張とは何か。』に対して 答え『公理』とあり 自己言及を表現していることは 理解し易いのです。幾何学では5公理です。この理解はたぶん正しいと思います。 ところが (2)私がよく分らないのは 第1不完全性定理です。『形式的体系Sにおいて、形式的体系Sが無矛盾である限り、「形式的体系Sにおいて命題は証明可能である。」という命題も「形式的体系Sにおいて命題は証明不可能である。」という命題も証明不可能である。』 と表される(別表現もありますが)とあります。 ここで現れる命題は抽象的言語であってよく分らないのです。例えばユークリッド幾何学においてはこの具体例は何でしょうか。私の理解は 「例えば無限遠点において平行線は交わるは証明可能である」はその例のようにおむのですが。つまり 例題には ユークリッド幾何学では未定義の無限遠点が現れており 証明はできない のです。いくら公理を増やして定義を明白にしても 未定義の領域はある ということです。 もう一つの例ですが 無限遠点は扱わないという6番目の公理を追加したとしても 例えば 「X・X=-1 は根がない は証明可能である」も証明できない と思うのです。なぜなら複素数は未定義だからです。つまり 『公理で定義されても未定義域は必ずある』が第一不完全性定理の一つの別表現ではないか と思うのです。この理解が間違っているのかどうか どなたかにお教えて頂きたかったのですが 

  • 幾何学(トポロジー)を独学で学びたい!

    幾何学や位相幾何学を独学で勉強したいのですが、独学で学ぶのに最適な参考書または演習書など教えてください。レベルとしては、高卒~程度でお願いします。極度に専門的過ぎるのは避けたいので、基礎・基本~標準くらいでわかりやすい内容の本をお願いします。

  • そもそも、ピタゴラスの定理って定理なのでしょうか?

    そもそも、ピタゴラスの定理って定理なのでしょうか? いいかえると、真実なのでしょうか? これは、実は簡単にわかります。証明できません。 なぜなら、非ユークリッド幾何学という反例があるから。 だから、ピタゴラスの定理っていうのは、定理ではなくて、 普通のユークリッド幾何学を展開していく上での、仮定とか前提と考えたほうがいいと思います。 ではなぜ、世の中にたくさんある「ピタゴラスの定理の証明」なるものはなんなのでしょうか? それは、ユークリッド幾何学を特徴づけるピタゴラスの定理よりも、 よりも基本的な公理を仮定していなければなりません。 一般的には、第五公準(平行線は唯一唯一つ)ってのがそうだと思われます。 しかし、その前に、点とか直線とか、距離とか、角度とか、合同とか、たくさんの概念が定義されなくてははなりません。 ところで、数学基礎論では、まず、集合とその間の演算を公理的に定義し、また、自然数と和や積を定義します。 それによって、数論の基本的な結合法則、可換法則、分配法則といったものも、「証明できる」ものになります。 1+1=2というのも「証明できる」ものになります。 同じようにしていけば、ピタゴラスの定理って基礎論的に、公理的に、「証明できる」定理なのでしょうか? 実は、「幾何学基礎論」という本を軽く読んだり、いろいろ検索してみたのですが、ピタゴラスの定理は載ってませんでした。 もしかして、ピタゴラスの定理っていうのは、基礎論的にも、公理的にも、「証明されていない」ものなのでしょうか? ちなみに、sinθ, cosθを、無限級数の和として定義してやって、 それによってユークリッド幾何の回転を定義し、sin^2θ+cos^2θ=1となるので「証明できた」というのは、たぶん、万人は認めないと思います。

  • 次のことを説明してください

    出来るだけ定義、具体例、応用などを含ませてください。 説明できるものだけでいいです。 (1)数学における無限 (2)数の体系 (3)素数とメルセンヌ数 (4)テイラーの定理 (5)集合と論理 (6)パラドックス (7)フラクタル (8)位相幾何学(トポロジー)

  • 微分形式,微分幾何学の参考書

    現在、大学の「幾何学基礎」という授業の中で、微分形式のことをやっています。具体的には、微分積分学の基本定理から、グリーンの定理(ストークスの定理)などの説明を行い、引き戻しの計算などを行っています(幾何学的に)。しかし、先生がどんどん授業を進めていき、なおかつあまり詳しい説明もしないので、正直よく分からなくなっています。 もう少しで、テストなので余計にあせっており、しかも何をやったらよいのかよく分かりません。 そこで、自習用のテキストを購入したいのですが、何かお勧めの参考書はありませんか?(微分積分や線形代数の基本が分かっていれば、分かるような、なるべく分かりやすいものはありませんか?) ちなみに、授業では、テキストは使っていないのですが(指定されていない) 「培風館 曲線・曲面と接続の幾何」(小沢 哲也) 「培風館 曲面の数学」(長野 正) を紹介されました。 また、自分で調べて 「岩波書店 微分形式の幾何学」(森田 茂之) 「裳華房 曲線と曲面の微分幾何」(小林 昭七) という本もよさそうだと思いました。 皆さんは、これらの本についてどのように思いますか? (分かりやすさ,内容,練習問題,レベルなどを総合的に見て) また、これ以外のおすすめの微分形式,微分幾何学の参考書があれば教えてください。(初心者向きで) テストまで、あまり時間がありません。申し訳ありませんがよろしくお願いいたします。

  • 不動点定理について

    ブラウワーの不動点定理とか角谷の不動点定理の証明は、何の教科書に載ってますか?位相幾何学でしょうか、それとも微分積分でしょうか。