• ベストアンサー
  • すぐに回答を!

逆三角関数の計算問題です。

arcsinx=2arcsin(-3/5) の計算なのですが、自分の計算が解答と一致しません。答えは-24/25です。 どうして間違っているのか、指摘していただけないでしょうか。よろしくお願いします。 両辺にsinを作用させて、 x=2*(-3/5)=-6/5 となってしまいます…。 初歩的な質問で申し訳ありません。

noname#180825

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数619
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

No.1の者です。記述ミスがありました。 sin2θ=2sinθcosθですね。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ああ~!なるほど! sin2θと見るのですね! おかげでほんとうにスッキリしました。 ありがとうございました^^

関連するQ&A

  • 逆三角関数の方程式

    Arcsinx+2Arcsin1/4=π/2 という問題なのですが、解いても解答と合いません。 自分なりに立てた途中式は Arcsinx=Arcsin1-2Arcsin1/4 α=Arcsin1、β=2Arcsin1/4とおくと sinα=1 2sinβ=1/4 sinβ=1/8 Arcsinx=α-β  x=sin(α-β) x=sinαcosβ-cosαsinβ =1×√63-0×1/8 =√63 ですが実際の解答は 7/8 です。 どこから間違えたのかわかりません・・。解き方をご教授お願いします。

  • 数学 逆三角関数

    sin(arccos√3/2)+cos(arctan-1/√3)+(arcsin-1/√2)の答えをお願いします。途中式も があると嬉しいです。ちなみに、解答は√3/2-1/2です

  • 逆三角関数

    tan(Arcsin4/5+Arccos12/13) cos(ArcsinX)sin(2ArcsinX) tan(3ArctanX) の計算方法がわかりません。おすすめの参考書などありましたら教えてもらいたいです。

その他の回答 (1)

  • 回答No.1

右辺の計算が間違っています。公式sin2θ=sinθcosθですから、 sin( 2arcsin(-3/5) ) = 2sin(arcsin(-3/5))cos(arcsin(-3/5)) ですよね。 最初のsin(arcsin(-3/5)は、もちろん-3/5。 次のcos(arcsin(-3/5))は、「sinが-3/5になる角度のcos」ですから、4/5 よって、答は、2×(-3/5)×(4/5)で、-24/25となります。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 逆三角関数の値

    ちょっと式がややこしいですが、 sin(arccos√3/2)+cos(arctan((-1)/√3))+arcsin((-1)/√2) を計算すると、 sin(π/6)+cos(-π/6)-π/4 となり、 結果が 1/2+(-√3/2)-π/4 だと思ったのですが、 解答は、(√3-1)/2 となっていました。 どこが間違っているのでしょうか。

  • 三角関数の微分 ライプニッツの定理の利用でとけるはずなのですが…。

    ===================================================== 【問題】 y=f(x)=sin(α arcsin x)   f^(n) (0)を求めよ。     ↑    f(0)をn回微分したもの  ======================================================== 行き詰ってしまいました。私の回答を載せさせてもらいますので、ご指摘や模範解答のほう宜しくお願いします。 =========================================================== 【自分の回答】 y'=1 / √(1- α^2 * sin^-2 x)=(sin x)/ √(sin^2 x - α^2) ∴y'*√(sin^2 x - α^2)/(sin x)=1 両辺をxについて微分し両辺√(sin^2 x - α^2)を掛けて整理すると、 y"*sin x +y'*α^2 * (cos x) / (sin x) =0 ⇒(1/α^2)* y" *(sin^2 x) /(cos x)+ y'=0 **************************************************** ここでライプニッツの定理や数学的帰納法を使って計算していくのですが、 f'(0),f"(0),f^(3) (0),..........といった感じに出来ません。 **************************************************** ===========================================================

  • 三角関数微分の問題です

    ===================================================== 【問題】 (1) x=a(t-sin t) y=a(1-cos t)  (a>0)  (0 <= t <= 2π)   dy/dxを求めよ。 (2) y=f(x)=sin(α arcsin x)   f^(n) (0)を求めよ。     ↑    f(0)をn回微分したもの  ======================================================== という問題で、(1)はなんとか解けたと思うのですが、(2)が行き詰ってしまいました。私の回答を載せさせてもらいますので、ご指摘や模範解答のほう宜しくお願いします。 =========================================================== 【自分の回答】 (1) dx/dt=a(1-cos t),dy/dt=a*sin t ∴dy/dx=(a*sin t)/{a(1-cos t)}=(sin t) /(1-cos t) (2) y'=1 / √(1- α^2 * sin^-2 x)=(sin x)/ √(sin^2 x - α^2) ∴y'*√(sin^2 x - α^2)/(sin x)=1 両辺をxについて微分し両辺√(sin^2 x - α^2)を掛けて整理すると、 y"*sin x +y'*α^2 * (cos x) / (sin x) =0 ⇒(1/α^2)* y" *(sin^2 x) /(cos x)+ y'=0 **************************************************** ここでライプニッツの定理や数学的帰納法を使って計算していくのですが、 f'(0),f"(0),f^(3) (0),..........といった感じに出来ません。 **************************************************** ===========================================================

  • 逆三角関数の微分の問題

    (sin^-1)x/1+x^2 という問題の答えの導き方を教えていただきたいです。 解答では、 (1/√x^4+x^2+1)(1-x^2/1+x^2) となっているのですが、自分で求めると 1/√x^4+x^2+1 となり一致しません。どなたか、お願いいたします。

  • 解析学/逆三角関数の証明・問題

    誰かわかる方、下の問題に答えてください!一つでも構いません。 1微分せずに証明 Arctan(x/√1-x^2)=Arcsinx (-1<x<1) Arctan(1/x)=(1)(π/2)-Arctanx (x>0) (2)-(π/2)-Arctanx (x<0) 2次の値を求める Arctan(3/4)+Arctan(1/7) tan(Arcsin(4/5)+Arccos(12/13)) 3多項式または分数式で表す cos(Arcsinx)sin(2Arcsinx) tan(3Arctanx)

  • 逆三角関数の問題です。

    次の式を簡単にせよ。 arctan(1/2)+arctan(1/3) arcsinx+arccosx という問題で、解法には、それぞれtan(与式),sin(与式)とあり、 答えはπ/4,π/2となっているのですが、 どのようにこの答えが導き出されたのかが分かりません。 どなたか解説していただけないでしょうか。よろしくお願いします。

  • 2次関数、三角比の問題を教えてください。

    わからないことがあります。(^2は二乗) 【1】mx^2+(1-5m)x+4m=0の2つの実数解が1より大であるような定数mの範囲を求めよ。  という問題で、解答が まず、実数条件からm≦1/9、1≦m ・・・(1) 次に、実数解をα、βとすると、  α>1、β>1⇔α-1>0、β-1>0  ∴(α-1)+(β-1)>0、(α-1)(β-1)>0 解と係数の関係を用いて変形すると  (α-1)+(β-1)=(3m-1)/m>0(両辺にm^2をかけて計算するんだよ!)∴m<0、1/3<m ・・・(2)        (以下略) とあるのですが、私はmをかけて計算したので、(2)の部分では1/3<mしか出ませんでしたが、結局その後の計算でm<0も出たので答えは合いました。なのでmでも良いのかと思ったのですが、似たような他の問題を解いたら二乗をかけないと答えが間違ってしまう問題がありました。、「両辺にm^2をかけて計算するんだよ!」と書いてある場所にはなぜmではなくてmの二乗をかけないといけないのでしょうか? 【2】(cosθ+sinθ)/(cosθ-sinθ)=√2-1のとき、tanθ、cos^2θの値を求めよ。  という問題で、解答が 与式から  cosθ+sinθ=(√2-1)cosθ-(√2-1)sinθ  ∴√2sinθ=(√2-2)cosθ  ∴tanθ=√2(1-√2)/√2=1-√2        (以下略) と書いてあるのですが、√2sinθ=(√2-2)cosθからどのように計算してtanθ=√2(1-√2)/√2=1-√2になるのでしょうか?私はtanθ=sinθ/cosθを使ってやろうとしたのですが、よくわからなくて答えを見たのですが答えを見てもいまいち理解出来ません。tanθ=sinθ/cosθを使っているのだと思うのですが、sinθの係数が分母に、cosθの係数が分子になっているのはなぜでしょうか? どちらか一方でも良いのでどなたかお願いします!       

  • 逆三角関数のグラフの問題が・・・

      昨日、逆三角関数の数値計算を質問させていただいた者なんですが、これで終わりにしますのでグラフの問題を最後に教えてください。  (1)  f(x)=Arcsin(sinx) (2) f(x)=sin(Arccosx)  の2問なのですが、 これらを、どのように場合わけをすればよいのかがわかりません。あと、グラフの概観を簡単でいいので言葉で示していただけるとありがたいです。よろしくおねがいします。

  • 逆三角関数について

    (1) arcsin3/5 + arcsin4/5 = (2) arctan3 + arctan2 = (3) sin(arccos3/5) = の答えについて教えて下さい。初歩的質問ですみません…

  • 逆三角関数の微分

    次の関数を微分せよ (1)y=(1/3)arctanx/3 (2)y=arcsin(cosx) という問題です。 (1)は arctanx=1/(x^2+1) を利用して y'=   1      1      ̄  *  ̄ ̄ ̄ ̄ ̄ ̄  * (x/3)'      3    (x/3)^2+1 =   1   ̄ ̄ ̄ ̄ ̄    (x)^2+9 となって、答えが出たのですか、 (2)を同じ要領で解くと y'=     1     ̄ ̄ ̄ ̄ ̄ ̄ ̄ * (-sinx)    √(1-cos^2x)  =  -sinx    ̄ ̄ ̄ ̄ ̄    √(sin^2x) で止まってしまいました。 略解によると 1(-π/2<x<0),-1(0<x<π/2)となって整数値をとるのですが、自分の回答ではそうなりそうもありません。 どなたか教えてください。