• ベストアンサー
  • すぐに回答を!

電気回路の問題

コンデンサC_1、スイッチ、コンデンサC_2、コイルLが直列につながれた回路があります。 また、初期状態でコンデンサC_1には電圧Eが充電されています。 t=0でスイッチを閉じて以降のC_2の端子電圧を求めよという問題です。 回路に流れる電流をiとして回路方程式を1/C_1∫idt+E=1/C_2∫idt+L(di/dt)のように立ててみました。 しかし解こうとしても計算途中で行き詰まり、うまく解けません。 この立式で正しいでしょうか? 間違っているようでしたら、解法も示していただけますと幸いです。 宜しくお願い致します。 ちなみに微分方程式の解法は学びましたが、ラプラス変換は未履修です。

共感・応援の気持ちを伝えよう!

  • 物理学
  • 回答数1
  • 閲覧数153
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

C1の放電によって,C2の電圧が増加しますから, E - 1/C1 ∫idt = 1/C2 ∫idt + L di/dt 両辺をtで微分すると, -i/C1 = i/C2 + Ld^2i/dt^2 すなわち, Ld^2i/dt^2 = -(1/C1+1/C2)i つまり,C1,C2の直列合成容量とLによる振動回路になると思います。 これを,t=0で i=0,E = L(di/dt)[t=0]の初期条件のもとに解くことになるのではないでしょうか?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

どうもありがとうございました!

関連するQ&A

  • 電気回路

    電気回路の問題です。 回路は1つのコンデンサがあり、そのコンデンサに並列に2つのコイル(L_1とL_2)が接続さているといった回路です。 初期状態でコンデンサCに電荷Qが蓄積されているとする。t=0でスイッチを閉じたとき、各インダクタンスに流れる電流を求めよ。ただしL_2>L_1である。 これを解くためにコイルL_1とL_2にながれる電流をそれぞれi_1とi_2として回路方程式を立ててみました。 1/c∫(i_1+i_2)dt=L_1(di_1/dt)+L_2(di_2/dt) この回路方程式を解こうとしているのですが、うまく解けません。 そもそもこの回路方程式で正しいのでしょうか? 解法を示していただけると幸いです。 ちなみにラプラス変換は未履修ですので、微分方程式を解くことになると思います。

  • コンデンサの問題

    電気回路の問題です。 回路は直流電源E,、抵抗R、コンデンサC_1からなる直列回路であり、コンデンサC_1の部分にスイッチとコンデンサC_2が並列に接続さているといった回路です。 初期状態でコンデンサC_1には電圧Eが充電されているとします。t=0でスイッチを閉じたとき、コンデンサC_1とC_2の端子電圧およびRに流れる電流を求めよいう問題です。 これを解くためにコンデンサC_1に流れる電流をi_1、C_2にながれる電流をi_2として回路方程式を2本立ててみました。 E=R(i_1+i_2)+1/c∫i_1dt+E E=R(i_1+i_2)+1/c∫i_2dt この回路方程式を解こうとしているのですが、うまく解けません。 そもそもこの回路方程式で正しいのでしょうか? 解法を示していただけると幸いです。 ちなみにラプラス変換は未履修ですので、微分方程式を解くことになると思います。

  • コイルを含む回路の過渡現象

    電源(電圧E)と、オンオフスイッチと、コイル(インダクタンスL)と抵抗(R)が直列に接続された回路があります。 スイッチをオンにしたときは、 回路方程式は E=L(di/dt)+iR となると思います。 定常状態では、 E=iR その後、電圧をゼロにすると、 0=L(di/dt)+iR になると思います。 定常後、電圧を維持したまま、スイッチを切った場合(オープンにした場合)どうなるのでしょうか? 回路はオープンになるので、電流は流れない(i=0)と思いますが、 一方、コイルがあります。 コイルは電流の減少を妨げようとします。 コイルはiがゼロになろうとするのに抵抗すると思いますが、電流源がありません。 どうなるのでしょうか?

  • 電気回路 過渡現象

    下図の回路について、時刻t=0においてスイッチの位置をNから1に切り替え、さらに時間が十分に経過した後(t=Tとする)、1から2へ切り替えた。ただしv(0)=0とする。自分の解答ものせているのですがあっているのかがわかりません。ご確認おねがいします。 (1)スイッチの位置を1から2へ切り替える直前のコンデンサCの電圧はいくらか。 V=E (2)スイッチの位置が1にあるとき(0<t<T)、コンデンサCの電圧V(t)に関する回路の方程式(微分方程式)を求めなさい。 Rに流れる電流をiとする。 E=Ri+v (a) i=dq/dt (b) q=Cv (c) (b)(c)式より i=Cdv/dt (d) (d)を(a)に代入して E=RC*dv/dt+v (f) (f)式か問2の解答かなぁっと思っています・ (3)スイッチの位置が1にあるとき(0<t<T)、コンデンサCの電圧V(t)を求めなさい。 上式(f)の微分方程式を解くと v(t)=E{1-e^(-t/(RC))} (4)スイッチの位置が2にあるとき(t>T)、コイルLの電流i(t)に関する回路の方程式(微分方程式)を求めなさい。 L*di/dt+Ri=V (1) V=q/C (2) (2)を(1)式に代入する L*di/dt+Ri=q/C (3) (3)式の両辺を微分する L*d^2i/dt^2+R*di/dt=Cdq/dt (4) -i=dq/dt (5) (4)(5)式より L*d^2i/dt^2+R*di/dt=-Ci → L*d^2i/dt^2+R*di/dt+Ci=0 (6) (6)式が問4の解答となりました。 (5)スイッチの位置が2にあるとき(t>T)、コイルの電流i(t)を求めなさい (6)式の初期条件をどのようにいれたらいいのかがわからず,とけません。

  • 電子回路の問題です。

    電子回路の問題です。 抵抗RとキャパシタンスCのコンデンサが直列接続された回路に正弦派交流電圧e=Emsinωtを加えた時(RC直列回路),回路に流れる電流を求めよ。 ただし、解の形を知らないとして解け。 つまり回路方程式においてe=0として微分方程式を解けという問題だと思うのですが計算過程が分かりません(~_~;) 詳しい解答をよろしくお願いしますm(_ _)m Ri+1/C∮idt=0

  • 電気回路 過渡現象

    電気回路 過渡現象 下図の回路について、時刻t=0においてスイッチの位置をNから1に切り替え、さらに時間が十分に経過した後(t=Tとする)、1から2へ切り替えた。ただしv(0)=0とする。自分の解答ものせているのですがあっているのかがわかりません。ご確認おねがいします。 (1)スイッチの位置を1から2へ切り替える直前のコンデンサCの電圧はいくらか。 V=E (2)スイッチの位置が1にあるとき(0<t<T)、コンデンサCの電圧V(t)に関する回路の方程式(微分方程式)を求めなさい。 Rに流れる電流をiとする。 E=Ri+v (a) i=dq/dt (b) q=Cv (c) (b)(c)式より i=Cdv/dt (d) (d)を(a)に代入して E=RC*dv/dt+v (f) (f)式か問2の解答かなぁっと思っています・ (3)スイッチの位置が1にあるとき(0<t<T)、コンデンサCの電圧V(t)を求めなさい。 上式(f)の微分方程式を解くと v(t)=E{1-e^(-t/(RC))} (4)スイッチの位置が2にあるとき(t>T)、コイルLの電流i(t)に関する回路の方程式(微分方程式)を求めなさい。 L*di/dt+Ri=V (1) V=q/C (2) (2)を(1)式に代入する L*di/dt+Ri=q/C (3) (3)式の両辺を微分する L*d^2i/dt^2+R*di/dt=Cdq/dt (4) -i=dq/dt (5) (4)(5)式より L*d^2i/dt^2+R*di/dt=-Ci → L*d^2i/dt^2+R*di/dt+Ci=0 (6) (6)式が問4の解答となりました。 (5)スイッチの位置が2にあるとき(t>T)、コイルの電流i(t)を求めなさい (6)式の初期条件をどのようにいれたらいいのかがわからず,とけません。

  • RL回路での回路方程式

    電源電圧がE、抵抗R、インダクタンスLのコイルが直列につながれてできた回路を考えます。 時間t=0のときに回路のスイッチを閉じ、その直後における過渡状態を回路方程式で表します。 するとE=Ri+Ldi/dtという一次線形微分方程式を立てることができます。 このとき左辺E=0とした時の式(同時方程式)0=Ri+Ldi/dtを解こうとすると、di/i=-Rdt/Lと変形できます。 するとln(i)=-Rt/L+C(Cは積分定数)となるという風に学びました。 しかし、なぜdi/i=-Rdt/Lをln(i)=-Rt/L+Cと変形できるのかわかりません。 ネットでいろいろ検索してみたものの、解説がなされていないため理解できていません。 どのようなことからこのような式変形がなされたのか解説を宜しくお願いします。

  • 電池・抵抗・コイル・コンデンサ回路における式

    電池と抵抗・コイル・コンデンサなどで回路をつくったときの式の立て方で質問です。 私は,全部直列だと仮定すると 電源電圧=RI+L(dI/dt)+q/C ※ 電源電圧は抵抗とコイルとコンデンサによる電圧降下と同じ と式をたててきました。 ところが,最近この関連の本を改めて読むと 電源電圧-L(dI/dt)=RI+q/C ※ 電源電圧-コイルの逆起電力=抵抗の電圧降下+コンデンサの電圧降下 と説明しています。 さらには,充電したコンデンサとコイルだけの回路で -L(dI/dt)=-q/C と式をたてた後,コンデンサの電荷と電流の向きから I=-qより L(dI/dt)=-q/C と説明している本があります。  そこで質問です。 1 コイルを逆起電力(電池の一種?)と見なして式をたてても,私のように式をたてても結果的には一緒になると思うのですが,わざわざコイルを電池と見なす理由は何でしょうか。コイルによる電圧降下と単純に考えるのは安易なのでしょうか。 2 充電したコンデンサとコイルの回路の説明は意味が分かりませんでした。単純に電池のない回路と見なして,L(dI/dt)+q/C=0としても式としては同じです。私の理解が安易なのでしょうか。  御指導いただければ幸いです。 

  • RLC回路の過渡応答について

    添付画像の(a)のようなRLC回路の過渡応答の問題が解けずに困っています。 キャパシタンスに蓄えられる電荷についての微分方程式を立て、これを解いてインダクタンスに流れる電流を求める問題です。 まず定常状態でのLに流れる電流とキャパシタンスの両端の電圧はそれぞれ Il=E/4R Vc=E/4 と求まりました。(計算、考え方が間違っていなければですが・・・) そして図の(b)のようにt=0でスイッチを入れた後(電源短絡後)の等価回路を考えたのですが、ここから方程式がどのようになるのかが分かりません。 Cからi(t)が分流する際、ちょうどi(t)/2だけRL直列部とRの部分に流れるとして (1/c)∫idt=Ri1+L(di1/dt)+Ri2 → Ri+(L/2)di/dt としてここから電荷の式に直すという解き方でいいのでしょうか? 考え方(等価回路や定常状態の電流・電圧等)に間違えがありましたらご指摘よろしくお願いします。

  • 物理 交流LCR回路の問題について

    次の問題の(2)が解けません(><) (1)で求めた微分方程式から電流のIの式を求めて解けば出来そうなのですが、求めることができません。 どなたか分かる方教えていただけると嬉しいです。 下図のように大きさRの抵抗、容量Cのコンデンサー、及びインダクタンスLのコイルを直列に接続した回路がある。 (1)回路に入力する電圧をE、回路を流れる電流をIとするとき、EとIの関係を表す微分方程式をたてよ。 〈解答〉 Ld^2I/dt^2+RdI/dt+I/C=dE/dt で合ってると思います… (2)R=200Ω、L=10Hとし、入力電圧Eを50Hzの交流電圧とする。この時回路に流れる電流IはCにより変化する。 電流Iの実効値を最大にするCの大きさを求めよ。 よろしくお願いします(_ _)