• 締切済み
  • すぐに回答を!

物理 交流LCR回路の問題について

次の問題の(2)が解けません(><) (1)で求めた微分方程式から電流のIの式を求めて解けば出来そうなのですが、求めることができません。 どなたか分かる方教えていただけると嬉しいです。 下図のように大きさRの抵抗、容量Cのコンデンサー、及びインダクタンスLのコイルを直列に接続した回路がある。 (1)回路に入力する電圧をE、回路を流れる電流をIとするとき、EとIの関係を表す微分方程式をたてよ。 〈解答〉 Ld^2I/dt^2+RdI/dt+I/C=dE/dt で合ってると思います… (2)R=200Ω、L=10Hとし、入力電圧Eを50Hzの交流電圧とする。この時回路に流れる電流IはCにより変化する。 電流Iの実効値を最大にするCの大きさを求めよ。 よろしくお願いします(_ _)

共感・応援の気持ちを伝えよう!

  • 物理学
  • 回答数5
  • 閲覧数604
  • ありがとう数2

みんなの回答

  • 回答No.5

A_NO1 です。 単純にタイポです。申し訳ない。 フェイザー法が正しいです。 単に交流理論と呼ぶこともあります。

共感・感謝の気持ちを伝えよう!

  • 回答No.4

>…“ファイザー法”で検索してみてもそれらしきものが出てきませんでした… “ファイザー”じゃなくて、“フェーザ (phasor) ”なんじゃありませんか?    ↓ 一例   参考 URL    

参考URL:
http://ja.wikipedia.org/wiki/%E3%83%95%E3%82%A7%E3%83%BC%E3%82%B6%E8%A1%A8%E7%A4%BA

共感・感謝の気持ちを伝えよう!

  • 回答No.3
  • info22_
  • ベストアンサー率67% (2650/3922)

>何か別名などありますか? 直接なら「Phasor Solution Method 」でしょうね。 参考URL(先頭のhは補ってください) ttp://onlinelibrary.wiley.com/doi/10.1002/0471758159.app1/pdf でも 「RLC直列回路」、「交流理論」、「交流回路」、「交流回路と複素数」などで検索した方がいいでしょう。 ttp://www.geisya.or.jp/~mwm48961/electro/alternate2.htm ttp://www.yonago-k.ac.jp/denki/lab/nitta/lecture/E2_e-circuit1/note/note19.pdf などで同じ問題を「Phasor図」を使って扱っていますよ。

共感・感謝の気持ちを伝えよう!

  • 回答No.2

C、Lが無ければと考えれば分りやすいかと思います 共振した時はインピーダンスは純抵抗のみになり、 其の時、電流は最大値になり直流回路と同じになります 共振時の条件ははωL=1/ωcです

共感・感謝の気持ちを伝えよう!

  • 回答No.1

微分方程式で解くなら E=(e/√(2))・sin(ωt) I=(i/√(2))・sin(ωt+α)=(i/√(2))・{sin(ωt)cosα+cos(ωt)sinα} を微分方程式に代入して解けばよいでしょう。 でも普通はファイザー法というので解きます。つまり I = E/(R + jωL + 1/(jωC)) 電流が最大の時 jωL + 1/(jωC) = 0 なので ω^2・LC = 1 →C = 1/(ω^2・L)

共感・感謝の気持ちを伝えよう!

質問者からのお礼

迅速なご回答ありがとうございます。 ファイザー法によって答えが求まることは理解できましたが、“ファイザー法”で検索してみてもそれらしきものが出てきませんでした… 何か別名などありますか? 色々と聞いてしまいすみません。

関連するQ&A

  • この電気回路の問題を教えてください

    この電気回路の問題を教えてください 答えが無いので合ってるかわからないです教えてください あと問題(1)が分かりません。おしえてください (1)回路方程式を立てよ。 (2)下図の電流Iを、電圧E、角周波数ω、抵抗R1,R2、インダクタンスL1,L2を用いてあらわせ。 (3)Iの位相がEの位相より90度遅れる各周波数ωをもとめよ。 自分の解答としては、 (2) 電源電圧Eを、回路全体のインピーダンスで割って分流の公式を用いて I = (R1*E) / 【(R1*R2-ω^2*L1*L2)+jω(R1*L2+L1(R1+R2)】 (3) (2)の問題の分母の実部=0とすればよいので ω=√(R1*R2 / L1*L2)

  • 電気回路 過渡現象

    下図の回路について、時刻t=0においてスイッチの位置をNから1に切り替え、さらに時間が十分に経過した後(t=Tとする)、1から2へ切り替えた。ただしv(0)=0とする。自分の解答ものせているのですがあっているのかがわかりません。ご確認おねがいします。 (1)スイッチの位置を1から2へ切り替える直前のコンデンサCの電圧はいくらか。 V=E (2)スイッチの位置が1にあるとき(0<t<T)、コンデンサCの電圧V(t)に関する回路の方程式(微分方程式)を求めなさい。 Rに流れる電流をiとする。 E=Ri+v (a) i=dq/dt (b) q=Cv (c) (b)(c)式より i=Cdv/dt (d) (d)を(a)に代入して E=RC*dv/dt+v (f) (f)式か問2の解答かなぁっと思っています・ (3)スイッチの位置が1にあるとき(0<t<T)、コンデンサCの電圧V(t)を求めなさい。 上式(f)の微分方程式を解くと v(t)=E{1-e^(-t/(RC))} (4)スイッチの位置が2にあるとき(t>T)、コイルLの電流i(t)に関する回路の方程式(微分方程式)を求めなさい。 L*di/dt+Ri=V (1) V=q/C (2) (2)を(1)式に代入する L*di/dt+Ri=q/C (3) (3)式の両辺を微分する L*d^2i/dt^2+R*di/dt=Cdq/dt (4) -i=dq/dt (5) (4)(5)式より L*d^2i/dt^2+R*di/dt=-Ci → L*d^2i/dt^2+R*di/dt+Ci=0 (6) (6)式が問4の解答となりました。 (5)スイッチの位置が2にあるとき(t>T)、コイルの電流i(t)を求めなさい (6)式の初期条件をどのようにいれたらいいのかがわからず,とけません。

  • RLC回路の過渡応答について

    添付画像の(a)のようなRLC回路の過渡応答の問題が解けずに困っています。 キャパシタンスに蓄えられる電荷についての微分方程式を立て、これを解いてインダクタンスに流れる電流を求める問題です。 まず定常状態でのLに流れる電流とキャパシタンスの両端の電圧はそれぞれ Il=E/4R Vc=E/4 と求まりました。(計算、考え方が間違っていなければですが・・・) そして図の(b)のようにt=0でスイッチを入れた後(電源短絡後)の等価回路を考えたのですが、ここから方程式がどのようになるのかが分かりません。 Cからi(t)が分流する際、ちょうどi(t)/2だけRL直列部とRの部分に流れるとして (1/c)∫idt=Ri1+L(di1/dt)+Ri2 → Ri+(L/2)di/dt としてここから電荷の式に直すという解き方でいいのでしょうか? 考え方(等価回路や定常状態の電流・電圧等)に間違えがありましたらご指摘よろしくお願いします。

  • 電気回路 過渡現象

    電気回路 過渡現象 下図の回路について、時刻t=0においてスイッチの位置をNから1に切り替え、さらに時間が十分に経過した後(t=Tとする)、1から2へ切り替えた。ただしv(0)=0とする。自分の解答ものせているのですがあっているのかがわかりません。ご確認おねがいします。 (1)スイッチの位置を1から2へ切り替える直前のコンデンサCの電圧はいくらか。 V=E (2)スイッチの位置が1にあるとき(0<t<T)、コンデンサCの電圧V(t)に関する回路の方程式(微分方程式)を求めなさい。 Rに流れる電流をiとする。 E=Ri+v (a) i=dq/dt (b) q=Cv (c) (b)(c)式より i=Cdv/dt (d) (d)を(a)に代入して E=RC*dv/dt+v (f) (f)式か問2の解答かなぁっと思っています・ (3)スイッチの位置が1にあるとき(0<t<T)、コンデンサCの電圧V(t)を求めなさい。 上式(f)の微分方程式を解くと v(t)=E{1-e^(-t/(RC))} (4)スイッチの位置が2にあるとき(t>T)、コイルLの電流i(t)に関する回路の方程式(微分方程式)を求めなさい。 L*di/dt+Ri=V (1) V=q/C (2) (2)を(1)式に代入する L*di/dt+Ri=q/C (3) (3)式の両辺を微分する L*d^2i/dt^2+R*di/dt=Cdq/dt (4) -i=dq/dt (5) (4)(5)式より L*d^2i/dt^2+R*di/dt=-Ci → L*d^2i/dt^2+R*di/dt+Ci=0 (6) (6)式が問4の解答となりました。 (5)スイッチの位置が2にあるとき(t>T)、コイルの電流i(t)を求めなさい (6)式の初期条件をどのようにいれたらいいのかがわからず,とけません。

  • 電気回路

    電気回路の問題です。 回路は1つのコンデンサがあり、そのコンデンサに並列に2つのコイル(L_1とL_2)が接続さているといった回路です。 初期状態でコンデンサCに電荷Qが蓄積されているとする。t=0でスイッチを閉じたとき、各インダクタンスに流れる電流を求めよ。ただしL_2>L_1である。 これを解くためにコイルL_1とL_2にながれる電流をそれぞれi_1とi_2として回路方程式を立ててみました。 1/c∫(i_1+i_2)dt=L_1(di_1/dt)+L_2(di_2/dt) この回路方程式を解こうとしているのですが、うまく解けません。 そもそもこの回路方程式で正しいのでしょうか? 解法を示していただけると幸いです。 ちなみにラプラス変換は未履修ですので、微分方程式を解くことになると思います。

  • RL回路での回路方程式

    電源電圧がE、抵抗R、インダクタンスLのコイルが直列につながれてできた回路を考えます。 時間t=0のときに回路のスイッチを閉じ、その直後における過渡状態を回路方程式で表します。 するとE=Ri+Ldi/dtという一次線形微分方程式を立てることができます。 このとき左辺E=0とした時の式(同時方程式)0=Ri+Ldi/dtを解こうとすると、di/i=-Rdt/Lと変形できます。 するとln(i)=-Rt/L+C(Cは積分定数)となるという風に学びました。 しかし、なぜdi/i=-Rdt/Lをln(i)=-Rt/L+Cと変形できるのかわかりません。 ネットでいろいろ検索してみたものの、解説がなされていないため理解できていません。 どのようなことからこのような式変形がなされたのか解説を宜しくお願いします。

  • 三相交流の問題について質問です

    三相交流の問題について質問です e(t)=√(2)E1sinωt+√(2)E3sin(3ωt+θ3) が印加されている 回路に抵抗(r)とインダクタンス(L)が直列に接続されている時 (1)各調波の回路インピーダンスZ´1,Z´2を求めよ (2)回路に流れる各調波の電流の実効値I1,I2を求めよ (3)回路に流れるひずみ波電流の実効値をI求めよ (4)回路に消費される電力Pを求めよ (5)回路の力率を求めよ (1)Z´1=r+jωL,Z´2=r+j3ωL (2)I1=E1/(r^2+(ωL)^2),I2=E3/(r^2+(3ωL)^2) ここまでは出しました ここから(3)I=1/√(2)*√[2*E1^2/{r^2+(ωL)^2}+2*E3^2/{r^2+(3ωL)^2}] と出たのですが、これは合ってますでしょうか? また、(4)P=(Z´の実部)*(Iの実効値)^2でいいのでしょうか?

  • 電気回路 1階微分方程式の問題

    次の問題を教えてください。 ●インダクタンスLと抵抗Rからなる直列回路が、電圧V0の直流電源につながる。時刻t=0で回路のスイッチを閉じる。 1)時刻tで、回路に流れる電流をx(t)[A]とする。キルヒホッフの法則を用いて電流xに対する微分方程式を求めよ。 v0=L(dx)/(dt)+Rx でよいのでしょうか。 2)この微分方程式について、その斉次方程式の一般解xt(t)をもとめよ。 (dx)/(dt)+R/L・x=0 xt(t)=Ae^(-r/L)t でいいですか。

  • コイルを含む回路の過渡現象

    電源(電圧E)と、オンオフスイッチと、コイル(インダクタンスL)と抵抗(R)が直列に接続された回路があります。 スイッチをオンにしたときは、 回路方程式は E=L(di/dt)+iR となると思います。 定常状態では、 E=iR その後、電圧をゼロにすると、 0=L(di/dt)+iR になると思います。 定常後、電圧を維持したまま、スイッチを切った場合(オープンにした場合)どうなるのでしょうか? 回路はオープンになるので、電流は流れない(i=0)と思いますが、 一方、コイルがあります。 コイルは電流の減少を妨げようとします。 コイルはiがゼロになろうとするのに抵抗すると思いますが、電流源がありません。 どうなるのでしょうか?

  • 電気回路の問題

    コンデンサC_1、スイッチ、コンデンサC_2、コイルLが直列につながれた回路があります。 また、初期状態でコンデンサC_1には電圧Eが充電されています。 t=0でスイッチを閉じて以降のC_2の端子電圧を求めよという問題です。 回路に流れる電流をiとして回路方程式を1/C_1∫idt+E=1/C_2∫idt+L(di/dt)のように立ててみました。 しかし解こうとしても計算途中で行き詰まり、うまく解けません。 この立式で正しいでしょうか? 間違っているようでしたら、解法も示していただけますと幸いです。 宜しくお願い致します。 ちなみに微分方程式の解法は学びましたが、ラプラス変換は未履修です。