二次方程式と数列の性質を証明する方法

このQ&Aのポイント
  • 二次方程式x^2-px-1=0の解の数列{a(n)}の性質を証明します。
  • すべての自然数nにおいて、a(n+2)=pa(n+1)+a(n)が成り立つことを証明します。
  • すべての自然数nにおいて、a(n)が自然数であることを証明します。
回答を見る
  • ベストアンサー

証明の仕方を教えてください。

pを自然数とし、二次方程式x^2-px-1=0の二つの解をα、βとする。 数列{a(n)}をan=α^(n-1)+β^(n-1) (n=1,2,3…)によって定める。 (1)すべての自然数nに対し、a(n+2)=pa(n+1)+a(n)が成り立つことを示せ。 (2)すべての自然数nに対し、a(n)は自然数であることを示せ。 (3)pが奇数であるとき、すべての自然数nに対し、a(n)とa(n+1)の最大公約数は1であることを示せ。 という問題です。 (1)は計算して解けたのですが、(2)(3)をどのように証明したらよいのか分かりません。 教えていただけないでしょうか。よろしくお願いします。

noname#180825
noname#180825

質問者が選んだベストアンサー

  • ベストアンサー
  • naniwacchi
  • ベストアンサー率47% (942/1970)
回答No.2

こんにちわ。 (2)は、帰納法で示せますよ。 ただし、n= kだけを仮定してもダメですね。 (3)は背理法で。 a(n)と a(n+1)が共通因数:k(k≠ 1)をもつと仮定すると、 a(n+2)も kを因数にもつことが漸化式からわかります。 つまり、すべての nについて、a(n)は kを因数にもつことになります。 ところが、a(1)と a(2)を考えてみると・・・

noname#180825
質問者

お礼

ありがとうございました^^ おかげで解答することができました!

その他の回答 (1)

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

帰納法でいいんじゃない?

関連するQ&A

  • 数列の証明

    以下の解答がエレガントであるかどうかどなたかご意見頂けますでしょうか? A1>0 で An/n が増加数列、つまり (An+1/n+1)>(An/n) が全てのnについて成立とするとき - (a)、 lim (n->無限) An = 無限 - (b) を証明せよ、という問題です。 自分の解答: もし全てのn>N (Nは自然数)についてAn>M(Mは実数)が成立すれば(b)が成立する。 -(c) (a)の条件から、全てのn>N'(N'は自然数)について(An/n)>M'(M'は実数)が成立することがわかっている。 (An/n)>M' => An>M'n>M'N'(実数) が成立する。よってM'N' = M とすれば(c)が成立する。 ちょっとややこしいですがよろしくお願いします。

  • 数列

    数列 a(n)+pa(n-1)+q=0 a(1)=aとなる数列a(n)について a(n)をa,n,p,qを用いて表す a(n)^2+pa(n-1)+q a(1)=aとなる数列a(n)について x^2+px+q=0の解をx=s,tとするとき a(n)をa,n,s,tを用いて表す

  • だれか隣接3項間漸化式について教えてください。

    中年男性です。いま数列の勉強をしています。「なるほど高校数学 数列の物語」という読本を 読んでいるのですが、手に負えないので質問させてもらいました。  漸化式  A1=2, A2=3, An+2=5An+1-6An    n>=1 ・・・(1)  を満たす数列が特性方程式X^2=5X-6の解 X=2、X=3 から 2^n-1 と3^n-1に なることは実際に確かめて確認して納得したのですが、続くくだりから判らなくなって しまいました。  そのくだりとは“そこで次に問題となるのが、上記のような等比数列以外にこの  漸化式を満たす数列があるのか、ということです。  結論からいうと、特性方程式が異なる2つの解をもつときは、特性方程式の解を  公比とする等比数列の組み合わせを考えるだけで十分です。このことは次の  ようにして判ります・・・” と書いてあり特性方程式の解以外にないことの証明が始まるものと期待して読み進めたの ですが、漸化式の変形が始まり結局    An+1-2An=(A2-2A1)3^n-1    n>=1  ・・・(2)    An+1-3An=(A2-3A1)2^n-1    n>=1  ・・・(3)  という式になり、(2)式から(3)式を引くことで、    An=(A2-2A1)3^n-1-(A2-3A1)2^n-1     n>=1  となり、条件A1=2、A2=3を代入して一般項は    An=-1×3^n-1+3×2^n-1     n>=1 ・・・(4)  となりました。  これで特性方程式の解から導かれる数列以外に解がないことの  証明になるのでしょうか。また数列2^n-1や数列3^n-1が漸化式を  満たすことはすでにnに1、2、3・・・と代入して確認したのですが  一般項が(4)式であるということはどういうことなのでしょうか。  (4)式にnに1、2、3・・・と代入して確認していませんが(成立するのでしょうが)  このあたりの事情がよく判りません。  どなたか解説して戴けないでしょうか。

  • 難しい数列の問題

    f(x)=x^2+px+q(p,qは自然数の定数)に対して a(1)=1, a(n+1)=f(an) で定義される数列{An}がある。 (1)q=p^3-2p^2 の時、a( 3)をpで割った余りを求めよ。 (2)Anを3で割った余りをBn(bn=0,1,2)とする。b(n+1)-f(bn)は3の倍数であることを示せ。 (3)1≦p≦3m, 1≦q≦3m(mは自然数)とする。このとき{An}のすべての項が 3で割り切れないような(p,q)の組の数をmで示せ。 という問題で、 (1) (mod p)として、(合同式だけは大数で勉強しましたが他は高校レベルです) a(2)=p+q+1 a(3)=(p+q+1)^2+p(p+q+1)+q   =(p^3-2p^2+p+1)^2+p(p^3-2p^2+p+1)+p^3-2p^2   ≡1 (∵p≡0) ∴余りは 1 (2) (ⅰ)bn=1のとき (mod 3)として、 a(n)=a(n-1)^2+pa(n-1)+q≡1 これ以降((2)以降)が分かりません。 (2)は合同式は使わないと思いますが一応分かる分だけ書いてみました。 答えを教えていただける方よろしくお願いいたします。

  • 数学の問題の解答を教えて下さい。

    問: 正の数からなる数列{an}が次の2条件をみたしている。(あ)a1=2、a2=4(い)連続する3項an,an+1,an+2(n=1,2・・・)は、nが奇数のとき等差数列、nが偶数のとき等比数列をなす。このとき、anをnの式で表せ。 以上です。できるだけ詳しいご回答をよろしくお願いいたします。

  •  エジプトの分数問題に関する質問です。

     エジプトの分数問題に関する質問です。  A(n)は自然数で構成される数列として、  A(1)、n∈N (1)[ A(n)が偶数のときに   A(n+1)=A(n)/2  [ A(n)が奇数のときに   A(n+1)=3・A(n)+1   とすると、たとえば、A(1)=25 とすると   A(1)=25 , A(2)=76,  A(3)=38,  A(4)=19  (1)の数列はnを∞ に近づけていくとA(n)=1になることを証明した場合、エジプトの分数問題を解 いたのと同じかそれともまったく関連がないのか皆さんにお聞きしたい。

  • 素数は無限に多く存在することの証明(ユークリッドの別証)を二つの添削

    ユークリッドの証明は背理法を用いた証明。 素数を有限個とするならその最大素数をpnとして素数を小さい順にp1,p2,…,pnとした時 N=p1*p2*p3*…pn + 1 全ての自然数は素因数に分解できるのでp1~pnの少なくとも一つ因数に持つはずだが、どれで割っても1あまる。これはpnが最大の素数であることに矛盾 素数は無限に存在する。 といった証明。今回はこれの別称として以下の漸化式を用いたものを解けという問題です。 ◆a_{n}:=2^(2^n) + 1, n=1,2,3,… を用いた証明 この時任意のm≠nに対しa_{m}, a_{n}は互いに素である。実際n>mの時 a_{n} - 2 = 2^(2^n) - 1     ={2^2^(n-1) + 1}{2^2^(n-1) - 1}     =a_{n-1}*(a_{n-1} - 2)     =a_{n-1}*a_{n-2}*…*a_{m}*(a_{m} - 2) となるのでa_{m},a_{n}の公約数dは2の約数でなければならない。他方a_{m},a_{n}は奇数であるから(←漸化式より)d=1となる。すると各a_nを素因数分解すると少なくとも一つ素因子pnが得られ、これらはnが異なれば一致しない。かくして無限個の素数p1,p2,p3,…,pn,…が得られた□ ◆正整数の列a_nを次のように定める a_{n+1} = a_{n}*(a_{n} - 1) + 1, a_{1} = 2 これを用いて素数が無限であることを示すのですが 任意のm≠nに対して a_{n} - 1 = a_{n-1}*(a_{n-1} - 1)       = a_{n-1}*a_{n-2}*(a_{n-2} - 1)       = a_{n-1}*a_{n-2}*…*a_{m}*(a_{m} - 1) よりa_{n},a_{m}の公約数は1の約数でなければならない。よってa_{n},a_{m}は互いに素である。 すると各a_nを素因数分解すると少なくとも一つ素因子pnが得られ、これらはnが異なれば一致しない。かくして無限個の素数p1,p2,p3,…,pn,…が得られた□ これら2つの証明はこれであっているでしょうか?

  • 漸化式の問題です^^;

    問題;各項が正の数である数列{a[n]}は,a[1]=t,a[n+1]=(1/2)*(a[n])^2+1/4で定義されている。またxの2次方程式 x=(1/2)*(x^2)+1/4の2解をp,qとする。p<t<qであるとき,以下の問いに答えよ。 (1)p,qの値を求めよ。 (2)任意の自然数nについて,不等式p≦a[n}≦tが成り立つことを示せ。 (3)lim[n→∞](a[n])を求めよ。 【自分の解答】 (1)は普通に2次方程式解いて、できました。 (2)も数学的帰納法を用いて一応できました。 (3)が全然わかりません…。 はさみうちの原理を用いるのだろうという予想はつくのですが、使い方がいまいちわからなくて^^; どなたか教えてください^^w よろしくお願いします。(・∀・)

  • 漸化式における特性方程式

    はじめまして。 現在高校三年生で数学を勉強している文系です。 漸化式の分野で、「特性方程式」というものが出てきました。 参考書や検索して出たページ、過去の質問を参照しましたが、 途中までは理解できるものの、最後のところが理解できません。 というのは、 a_(n+1) = p(a_n) + q …(1) という漸化式が与えられた時、 a_(n+1) - α = β(a_n - α)…(2)  と変形できればこの数列は等比数列としてあらわすことができ、 a_nの一般項も求められる。 (2)を展開して係数比較をしていくと P=β , -αβ+α=q より αは x=px+q の解であることがわかる。 これを特性方程式と呼ぶ ここまでは理解できました。(もしおかしいところがあったら指摘してください) しかしその後の このαの解を(1)の漸化式の両辺から引くと… という個所から先が理解できません。 たしかに、(2)の a_(n+1) - α = β(a_n - α) という式でαに解を入れれば一般項を求められるのはわかりますが (1)の式 a_(n+1) = p(a_n) + q の両辺からαを引くと、 a_(n+1) - α = p(a_n) + q - α で(2)の式とは異なってしまい、等比数列と見ることはできなく なってしまいませんか? もしかしたらすごく単純なところを見逃しているのかもしれませんが、 この質問についての回答、よろしくお願いします。

  • 公約数で

    解答をみていてちょっと分らない部分があったのでご質問させていただきます。(表記しづらいので、数列Anで第n+1項を A(n+1)と表します)分らないのは、帰納法での証明の一部分です。また【 】の中は前問で証明されていたり条件として成り立っているとします。 【A(n+1) = An+Bn , B(n+1) = An … (1)   An,Bnは自然数で互いに素 … (2) 】 (1)、(2)からA(n+1)とB(n+1)は自然数である。 ここでA(n+1)とB(n+1)が互いに素でないとすると、 A(n+1)とB(n+1)は1より大きい公約数rを持つ。 ________________________(ここまでは分ります) (1)より Bn = A(n+1)-An であるからrはBnの約数でもありrはAnとBn の1より大きい公約数である。 ______________________ この部分が分りません^^;どうしてrはBnの約数でもありrはAnとBnの1より大きい公約数であるのでしょうか?分る方お願いします。