• ベストアンサー
  • すぐに回答を!

円と方程式

 次の問題を教えて下さい。 (1)点A(4 2)を中心とし 円x^2+y^2=5 に接する円の方程式は? (2)円x^2+y^2=4 に接し 傾きが3/4 である直線の方程式を求めよ。 (3)円 x^2+y^2=4 の接線のうち 傾きがmであるものは y=mx±r√1+m^2 であることを示せ。  問題に解説が付いていなかったので よろしくお願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

3、 Y=MX+B  とすると MX-Y+B=0 点と直線の距離より |B|/√(M^2+1)=2 B=+2√(M^2+1)または-2√(M^2+1) Y=MX + 2√(M^2+1)   Y=MX-2√(M^2+1)

共感・感謝の気持ちを伝えよう!

質問者からのお礼

どうもありがとうございます!

その他の回答 (1)

  • 回答No.1

1、 (X-4)^2 +(Y-2)^2 =R^2  とします 接するという事は中心同士の距離は半径+半径 2√(5)=√(5)+r  r=√(5) (X-4)^2 +(Y-2)^2 =5 2、 Y=(3/4)X+B とすると 3X-4Y+4B=0  点と直線の距離より |4B|/5  =  2 B=5/2, -5/2 Y=(3/4)X + 5/2 ,Y=(3/4)X - 5/2

共感・感謝の気持ちを伝えよう!

質問者からのお礼

どうもありがとうございます。

関連するQ&A

  • 円の方程式など

    やっぱり自分では解けませんでした。 1、次の条件をみたす円の方程式を求めよ。 (1) 3点(0,1),(2,3),(-1,2)を通る 2、次の円の方程式を求めよ。 (1) 中心が直線 y=-x+5上にあり、原点と点(-1,2)を通る円 (2) 2点(0,1),(1,8)を通り、x軸から長さ6の線分を切りとる円   (ただし、中心が第一象限の円) 3、次の円と直線の位置関係(異なる2点で交わる、接する、共有点がない)を   調べ、共有点がある場合は、その座標を求めよ。 (1) x^2+y^2=4,x-y=2√2   4、円 x^2+y^2=4と直線y=mx+4について、次の場合の定数mのとりうる値の   範囲を求めよ。 (1) 異なる2点で交わる (2) 共有点がない  よろしくお願いします。 

  • 図形と方程式の問題です。

    図形と方程式の問題です。 (2)~(4)を解いて下さい。 点A(8/3、2)と 円 x^2+y^2=4…(1), 円 x^2+y^2-8x-6y+24=0…(2)がある。 (1) 円(2)の中心の座標と半径を求めよ。 (2) 点A を通り、円(1)に 接する 直線の方程式 を求めよ。 (3)(2)で求めた 直線は 円(2) の 接線 であることを示せ。 (4)(2)で求めた 直線以外 の 円(1) と 円(2) の 両方に接する 直線の傾きを求めよ。

  • 高3の図形と方程式の問題です。

    高3の図形と方程式の問題です。 (1)は解けたとおもいますが(2)~(4)を教えていただけないでしょうか。 点A(8/3、2)と 円 x^2+y^2=4…(1), 円 x^2+y^2-8x-6y+24=0…(2) があります。 (1) 円(2)の中心の座標と半径を求めよ。 (2) 点Aを通り、円(1)に接する直線の方程式を求めよ。 (3)(2)で求めた直線は円(2)の接線であることを示せ。 (4)(2)で求めた直線以外の円(1)と円(2)の両方に接する直線の傾きを求めよ。   (1)は (x-4)^2+(y-3)^2=1     中心(4,3)半径1の円   (1)はこれでいいとおもうのですが....。            よろしくお願いします

  • 2つの円x^2+y^2=25,(x-4)^2+(y-3)^2=2がある。 (x-4)^2+(y-3)^2=2上の点(3,2)における接線の方程式と、2円の交点を通り、点(3,1)を通る円の方程式を求めよ。 接線の方程式を求める公式はわかるのですが、接線の傾きの求め方がわかりません。 あと、2円の交点を通る直線の方程式なら求まるのですが、点(3,1)を通る円となると、どのような解き方をすればいいかわからないんです。 もしわかる方がいたら、教えてください。お願いします。

  • 高校数学 円と直線・接線の方程式

    高校数学、円と直線・接戦の方程式の 問題です。 『次の円の接線の方程式と、その時の接点の座標を求めよ。 円 x^2 + y ^2 + 2x + 4y - 4 = 0 の接線で、 直線 y = - 1/2 x に垂直なもの 』 この問題なのですが、わからなく 解説を見たところ、 黄色く囲ったところが(このxの式は どこから来るのか )わかりません。 教えていただけると嬉しいです!

  • 図形と方程式

    点P(0,-3)を通り、円x^2+y^2+2x-1=0に接する直線の方程式と、接点の座標を計算で出そうとしたんですけど、難しくてでません。自分は計算力がないんですけど、だれか計算をまじえて細かく教えてください。自分でのやり方は接線の傾きをmとして点と直線の距離の公式を使いました。

  • 曲率円の方程式

     図のように y = x^2 において点(1,1) で接する曲率円の方程式を求めようとしているのですが、うまくいきません。  曲線 y = f(x) の曲率円の半径を R とすると   1/R = ( 1/(1+(dy/dx)^2)^(3/2) )(d^2y/dx^2) なので y = x^2 の曲率は   f'(x) = dy/dx = 2x   d^2y/dx^2 = 2   (dy/dx)^2 = 4x^2 より   1/R = 2/(1+4x^2)^(3/2)   R = (1+4x^2)^(3/2)/2  したがって (1,1) で接する曲率円の半径は   R = 5^(3/2)/2  また、f'(1) = 2 なので y = x^2 の (1,1) における接線の傾きは 2、法線の傾きは -1/2。したがって曲率円の中心(x0,y0)は   x0 = 1 - (5^(3/2)/2)(2/√5) = 1 - 5^(3/2)・5^(-1/2) = -4   y0 = 1 + (5^(3/2)/2)(1/√5) = 1 + (5^(3/2)/2)・5^(-1/2) = 1 + 5/2 = 7/2  また   R^2 = 5^3/4 = 125/4 なので x = 1 における y = x^2 の曲率円の方程式は   (x+4)^2 + (y-7/2)^2 = 125/4 ・・・・・※  これでいい思ったのですが、正しくないようです。というのも (1,1) での※の陽関数表示は図より   y = -√( 125/4 - (x+4)^2 ) となると思うのですが、x = 1 のときは   y = -√(125/4 - 25) = -√( 125/4 - 100/4 ) = -5/2 となってしまいます。どこがおかしいのでしょうか。

  • 円の接線の方程式

    円C:(x-a)^2+(y-b)^2=r^2上の点(x1,y1)における接線の方程式は、 (x1-a)(x-a)+(y1-b)(y-b)=r^2とありますが、 何故、aもbも全部マイナスなんでしょうか? Cの中心(a,b)が原点(0,0)にくるように平行移動し、 その円の接線の方程式を求め、 その接線を、元の位置に平行移動し戻す、という手順だと思うんですが、 そうすると、中心と接線が移動する方向は反対ですよね? なのに何故、a,bの符号が両方ともマイナスなのか、というのがわかりません。 わかる方解説お願いします。

  • 円の方程式について

    点(2,3)を通り、y軸に接して中心が直線 y=x+2 上にある円の方程式を求めよ。 という問題で解答が、 y軸に接して中心が直線 y=x+2 上にあるから、求める円の方程式は  (x-a)^2+{y-(a+2)}^2=a^2 とおける。これが、点(2,3)を通るから  (2-a)^2+(3-a-2)^2=a^2 a^2-6a+5=0より  (a-1)(a-5)=0  よって a=1,5 ゆえに  (x-1)^2+(y-3)^2=1, (x-5)^2+(y-7)^2=25 だったのですが、よく理解が出来ませんでした。 疑問点は、 (1)直線から円の方程式がどうして求められるのか。 (2)なぜ解が2つあるのか。 この2点です。 どなたか回答、よろしくお願いします。

  • 数IIの円と方程式の問題で分からないところが・・

    数IIの円と方程式の問題で分からないところが・・2問ほどあります。 アドバイスだけでいいので、教えてもらえると非常にありがたいです。 1問目:円(x-1)^2+(y-2)^2=25上の点(4,6)における接線の方程式を求めよ。 この問題の解き方がさっぱり分かりません^^; x1*x+y1*y=r^2 という公式は、x^2+y^2=r^2のときしか使えないですよね? 答えは3x+4y-36=0とあります; 2問目:点A(2,4)から円x^2+y^2=10に引いた接線の方程式と接点の座標を求めよ。 この問題もさっぱり分かりません^^; 答えは3x+y=10,(3,1) -x+3y=10,(-1,3)とあります;