• ベストアンサー
  • 困ってます

積分体積の問題が分かりません

体積の問題なのです わかんないので教えてください 曲線y=e^x と直線y=mxで囲まれた図形がある これをx軸のまわりに1回転してできる立体とy軸の周りに1回転してできる立体とが等しい体積にもつようにmの値を定めよという問題です 誰か教えてください

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数51
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • info22_
  • ベストアンサー率67% (2650/3922)

>曲線y=e^x と直線y=mxで囲まれた図形がある この図形が特定できません。 図に描いて示して頂け無いでしょうか? もし、 曲線y=e^(-x) と直線y=mxとy軸で囲まれた図形がある。 なら囲まれた図形ができることが分かりますが…。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 体積の問題です

    わかんないので教えてください 曲線y^2=x と直線y=mxで囲まれた図形がある これをx軸のまわりに1回転してできる立体とy軸の周りに1回転してできる立体とが等しい体積にもつようにmの値を定めよという問題です 誰か教えてください できれば詳しく教えて欲しいです お願いします。

  • 積分 体積 斜めで切断

    直線L:y=mxと曲線y=mx+sinx(0≦x≦π)で囲まれる図形を、直線Lの周りに一回転してできる立体の体積を求めよ。 という問題です。 よろしくお願いします。

  • 体積

    曲線y=sinx(0≦x≦π)とx軸とで囲まれた図形をx軸まわりに1回転してできる立体の体積を求める問題 1回転すると楕円形みたいな形になりますが。 どうやって体積を求めるのでしょうか? V=∫π(y^2)dxというしきになるのが分かりません。

  • 積分を使った体積の求め方

    高校の数学です。 積分を使った体積の求め方が、わかんなくなってしまいました。 この問題の答えも見つかりませんし、ノートもどっかにいっちゃったみたいだし、教科書を読んでもいまいちわからないので、助けてください。 問題 2つの曲線   C1:y= x^2 - 4x + 3   C2:y=-x^2 + 2x - 1 とで囲まれた部分を、x軸の周りに1回転してできる立体の体積を求めよ。 C1とx軸で囲まれた部分を、x軸の周りに1回転してできる立体の体積を求めよ、という問題はできましたが、2つの曲線で囲まれちゃうと、どうやったらいいのかわかんなくなっちゃいます。 あと、インテグラル3から1といった言葉は、パソコンではどうやって書けばいいのでしょうか?

  • 積分の問題について

    曲線y=Logxとx軸、y軸、y=1で囲まれる図形Sについて Sをx軸のまわりに1回転にできる立体の体積 Sをy軸のまわりに1回転にできる立体の体積 曲線y=logx上の点P(t,logt)(t≧1)からx軸に垂線PQを下ろし、PQを通りx軸に垂直な平面上にPQを1辺とする正三角形PQRのとき、△PQRの面積 1≦t≦eの範囲でPが曲線上を動くとき、△PQRの周または内部の点が通過してできる立体の体積 めっちや困まってます。よろしくお願いします。

  • 数学III 積分(体積計算)について

    【問】曲線y=√xと直線y=x-2およびy軸によって囲まれた図形を、x軸の周りに1回転してできる回転体の体積を求めよ。 グラフまでかけたところで先の求め方がわからなくなり困っています。 解き方のヒントだけでも良いのでどなたかお力添えお願いします!

  • 回転体の積分問題。

    回転体の積分問題で、 y=1/(1+x)とx軸とy軸と直線x=1で囲まれた図形をx軸の周りに1回転させて出来る立体の体積 を求めたいのですが、y=1/(1+x)のグラフが書けません。 グラフの書き方及び、解答をしていただけると嬉しいです。 ・ また、 y=(x+1)(x-2)とx軸で囲まれた図形をx軸の周りに1回転させてできる立体の体積 は、81/10πで合っていますでしょうか? 解答お願いいたします。

  • 積分(回転体)の問題です。

    xy平面上の曲線C:y=1/x(x>0)を考える。0<p<qのとき、C上の2点P(p,1/p)、Q(q,1/q)を通る直線とCで囲まれる図形の面積をSとし、その図形をx軸の周りに1回転してできる回転体の体積をV とする。 第1問 r=q/pとおくとき、SおよびVの値をp、rを用いて表せ。 第2問 自然数nに対して、p=3^(n-1)、q=3^nのときのVの値をV[n]とおく。無限級数Σ[n=1..∞]V[n]の和を求めよ。 第1問のSに関しては直線PQをy={(-1)/(pq)}x+1/p+1/qと求めて曲線Cで引いてq~p区間を積分しS=(1-r^2)/(2r)+log(r)となりました。あってるかどうかわかりませんが… V以降でわからなくなってしまいました。 解答よろしくお願いします。

  • 数学3の体積の問題がわかりません。

    数学3の体積の問題がわかりません。 xy平面上の曲線y=t^3,y=(1/√t)•e^(t^2) (1<=t<=2), 2直線x=1,x=8とx軸で囲まれた部分を、x軸の周りに1回転してできる立体の体積を求めよ。 V=∫[1→8] y^2 dx としてyにtの式を突っ込んでやってみましたがその後の計算でつまりした。 わかりません。 お願いします!

  • バウムクーヘン積分

    数3の積分の体積の問題です。教えてくださいorz 曲線 y=kcosx とx軸、y軸によって囲まれる図形をx軸およびy軸のまわりに 1回転してできる2つの立体の体積が等しくなるような正の定数 kの値を求めよ。 これをバームクーヘン積分でとくとどうなるでしょうか? 教えてください・・・ 補足 自分は0からπ/2の図形(4分の1円)の積分で考えたのですが、 友達は-π/2からπ/2の図形(半円)で考えて、ふたりの答えが違ってます。。 自分は4-8/πになったのですが、 友達は2-4/πに… どっちがあってますか?