2変数関数の極値の問題

このQ&Aのポイント
  • 2変数関数の極値を求める問題についてまとめました。
  • 解いたところ、極値を持ちうる座標の候補として、(0,1/2),(1,1),(-1,1)を得ました。
  • 点(0,1/2)で極小値-1/4が得られ、点(-1,1)では極値を持たないことが分かりました。
回答を見る
  • ベストアンサー

2変数関数の極値の問題

f(x,y)=y^2-yx^2-y+x^2について極値を求めろという問題です。 1階と2階偏導関数を求めて、まず、f[x]=0とf[y]=0(xとyでの偏導関数を表しています)を解いたところ、極値を持ちうる座標の候補として、(0,1/2),(1,1),(-1,1)を得ました。 その後、{f[xy](0,1/2)}^2-f[xx](0,1/2)f[yy](0,1/2)を計算したところ、-2となり-2<0であり、f[xx](0,1/2)=1>0なので点(0,1/2)で極小値-1/4が得られました。 点(-1,1)についても同様に計算したところ、{f[xy](-1,1)}^2-f[xx](-1,1)f[yy](-1,1)=2>0となり、極値を持たないことが分かりました。 しかし、点(1,1)については、{f[xy](1,1)}^2-f[xx](1,1)f[yy](1,1)=-2<0となるのですが、f[xx](1,1)=0となってしまいます。 この場合は、極値はもちえるのでしょうか? 鞍点となり、極値にはならないのでしょうか? ネットで調べてみましたが、見つけられませんでした。 分かる方、ご指南お願いします。 また、点(0,1/2),(-1,1)の解答は合っていますでしょうか? こちらもお答えいただけると幸いです。

質問者が選んだベストアンサー

  • ベストアンサー
  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.1

結論から言うと (0,1/2)は極小点 (1,1)は鞍点 (-1,1)も鞍点 となります。 >極値を持ちうる座標の候補として、(0,1/2),(1,1),(-1,1)を得ました。 これは合っています。 >{f[xy](0,1/2)}^2-f[xx](0,1/2)f[yy](0,1/2)を計算したところ、-2となり-2<0であり、f[xx](0,1/2)=1>0なので点(0,1/2)で極小値-1/4が得られました。 これも合っています。 >点(-1,1)についても同様に計算したところ、{f[xy](-1,1)}^2-f[xx](-1,1)f[yy](-1,1)=2>0となり、極値を持たないことが分かりました。 この計算は間違っています。 f[xy](-1,1)}^2-f[xx](-1,1)f[yy](-1,1)=4>0 となります。結果として極値を持たないことは同じです。 詳しく調べるとx=-1のときf(-1,y)=(y-1)^2でy=1の前後で極小、 x=-yの時f(-y,y)=-y(y-1)^2でy=1の前後で極大となるので(-1,1)は鞍点であると言える。 >しかし、点(1,1)については、{f[xy](1,1)}^2-f[xx](1,1)f[yy](1,1)=-2<0となるのですが、f[xx](1,1)=0となってしまいます。 >この場合は、極値はもちえるのでしょうか? >鞍点となり、極値にはならないのでしょうか? この計算もも違っています。 {f[xy](1,1)}^2-f[xx](1,1)f[yy](1,1)=4>0 となりますので極値を持ちません。 詳しく調べるとx=1のときf(1,y)=(y-1)^2でy=1の前後で極小、 x=yの時f(y,y)=-y(y-1)^2でy=1の前後で極大となるので(1,1)は鞍点であると言えます。

exymezxy09
質問者

お礼

>この計算もも違っています。 {f[xy](1,1)}^2-f[xx](1,1)f[yy](1,1)=4>0 本当ですね。 計算ミスしてました。 2乗するのを忘れていました。 どうもありがとうございました!

関連するQ&A

  • 2変数関数の極値を求める問題について

    微分積分の回答をお願いいたします。 関数z=f(x,y)=x^3-3xy+y^2について次の問いを求めよ 1、z=f(x,y)の偏導関数を計算し、極値の候補を求めよ、 2、z=f(x,y)の第二次偏導関数を計算し、上で求めた候補が極値かどうか求めよ、 また、極値ならば極大か極小か吟味せよ。 回答をお願いいたします。

  • 2変数関数の極値について

    F(x,y)=xy が G(x,y)=x^2+xy+y^2-1 を満たしているとき、F(x,y)の極値を求めよ。 という問がわかりません。 ラグランジュの未定乗数法を用いて解いてみたのですが、 ・極値をもつ可能性のある点は、(±1/√3, ±1/√3) または(±1,∓1) でよろしいのでしょうか? ・これらをF(x,y)に代入した値を極小値、極大値としてもよろしいのでしょうか? 御教授よろしくお願いいたします。

  • 2変数関数の極値の問題について

    関数 f(x,y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2 の極値を求めよという問題で, fx = 4x^3 - 4x + 4y = 0, fy = 4y^3 - 4y + 4x = 0 という関係から極値を得る候補点が(√2, -√2) , (-√2, √2) , (0, 0) が得られるようなのですが, まず前2つの候補点を求める方法が知りたいです. よろしくお願いします.

  • 2変数関数の極値について

    f(x,y)=(x^3)(y^2)の極値を求めよ という問題なのですが、偏導関数が0となる点を調べたところ x軸とy軸という解が出ました。しかし、これをDに代入すると D=0となり、極値の判定ができません。 D=0の場合、関数により対処法が違うということは知っているのですが この場合どうすればいいかわからないのでお力をお借りしたいです。 回答よろしくお願いします。

  • 2変数関数の極値

    2変数関数f(x,y)=x^3-(x^2-y^2)/2+xy^2を考える、という問題です。 問題の(3)でf(x,y)の極値を求めよ、と問われたのですが、 D(x,y)=fxy(x,y)^2ーfxx(x,y)fyy(x,y) とおき、z=f(x,y)の停留点(a,b)をもとめて、極値の判定を行ったところ、D(a,b)>0となり f(a,b)は極値ではないとなってしまいました。 ちなみに、停留点は(0,0)になりました。 これは正解なのでしょうか?それとも計算間違いですか? 間違っていたら過程を教えていただけないでしょうか。お願いします。

  • 2変数関数のテイラー展開

     sin(x^2+y^2)を点 (1,1) のまわりに二次の項までテイラー展開する  合ってますでしょうか?  偏導関数の計算は wolframa でやりました(笑)。   f_x = 2x・cos(x^2+y^2)   f_y = 2y・cos(x^2+y^2)   f_xx = 2{ cos(x^2+y^2) - 2x^2・sin(x^2+y^2) }   f_xy = -4xy・sin(x^2+y^2)   f_yy = 2{ cos(x^2+y^2) - 2y^2・sin(x^2+y^2) }   f_x(1,1) = 2cos(2)   f_y(1,1) = 2cos(2)   f_xx(1,1) = 2{ cos(2) - 2sin(2) }   f_xy(1,1) = -4sin(2)   f_yy(1,1) = 2{ cos(2) - 2sin(2) }   f(1+x,1+y)≒ f(1,1)         + f_x(1,1)x + f_y(1,1)y         + (1/2){ f_xx(1,1)x^2 + 2f_xy(1,1)xy + f_yy(1,1)y^2 }        = sin(2) + 2cos(2)・x + 2cos(2)・y             + (1/2){ 2(cos(2)-2sin(2))x^2             - 8sin(2)xy             + 2(cos(2)-2sin(2))y^2 }

  • 2変数関数の極値を求める問題が分かりません。

    次の2変数関数の極値を求める問題が分かりません。 1) f(x,y)=x^3-2xy-y^2-x 2) f(x,y)=xe^(-x^2-y^2) 何方か分かる方がいらっしゃったら途中過程の解説をよろしくお願いします。

  • ラグランジュの未定乗数法をつかって二変数関数の極値を求める問題で困ってます

    Γ={ (x,y)∈R^2; x^2+2y^2 = 1 } 上で定義された関数 f(x,y) = x^2+2xy+y^2 の極値を求めよ 教えていただきたいのは上の問題です ラグランジュの未定乗数法によって極値を取る点の候補を求めると (-1/√3, 1/√3), (1/√3, -1/√3), (2/√6, 1/√6), (-2/√6, -1/√6) ここで、十分に小さい数 h k をとると (1/√3, -1/√3) について f(1/√3+h, -1/√3+k)-f(1/√3, -1/√3) =… = (h+k)^2 > 0 よって f は (1/√3, -1/√3)で極小 同様に(-1/√3, 1/√3) のときも極小 また (2/√6, 1/√6) について f(2/√6+h, 1/√6+k)-f(2/√6, 1/√6) =… = (h+k)(h+k+√6) これは h k の値によって正にも負にもなる、よって極値でない 同様に (-2/√6, -1/√6) について f(-2/√6+h, -1/√6+k)-f(-2/√6, -1/√6) =… = (h+k)(h+k-√6) これは h k の値によって正にも負にもなる、よって極値でない としたのですが、mathmatica で確認すると (2/√6, 1/√6), (-2/√6, -1/√6) で f は極大をとるらしく困っています 上のがオカシイのだと思いますが、どこが間違っているのか教えて欲しいです よろしくおねがいします

  • 関数の極値を求める問題が分かりません

    「f(x,y)=xy(2-x-y)の極値を求めなさい。」という問題の過程で、停留点が(0,0),(0,2),(2,0),(2/3,2/3)と求まるのですが、(0,0),(2,0),(0,2)が極値でないことを説明できません。 どなたか説明できる方がいらっしゃいましたら教えて下さい。 よろしくお願いします。

  • 2変数関数の鞍点

    2変数関数の鞍点 独学で微分積分学を勉強しています。 今やっているのは2変数関数のところで、 鞍点というのを知って1変数との違いを感じました。 いろいろ問題を見ていると  ∂F/∂x, ∂F/∂y , ∂^2F/∂x^2, ∂^2F/∂y^2 を調べることで、極大か極小か鞍点かを求めているようでした。 そこで、2変数関数 F(x,y) の原点での状況が  F(0,0) = 0 で x軸上、y軸上は F(x,y) > 0 で尾根、 y = ±x の直線上は F(x,y) < 0 で谷底のような 原点を中心に波打ってるような関数の場合  ∂F/∂x = 0, ∂F/∂y = 0  ∂^2F/∂x^2 > 0, ∂^2F/∂y^2 > 0 と分かっても極小にはならないんじゃないかと思いました。 なめらかな関数だとこんなものはあり得ないのでしょうか? それとももっと高度な極大極小などの判定方法があるのでしょうか? 式が分からないので画像添付ができず、わかりにくくてすみません。 よろしくお願いします。