• 締切済み

PMTとシンチレーターについて

線源を用いてその線源のγ線のスペクトルを測定する際、光電子増倍管(PMT)にはシンチレーターを接着しています。 シンチレーターは放射線の粒子が飛んできたときに、光を出す物質です。これをPMTは検出するわけです。 しかし、ここで疑問が浮上しました。PMTが光を検出できるなら、線源から出るγ線だって検出できるはずです。なぜシンチレーターを使用するのかと。 わたしはPMTが感受する波長に限度があるから、我々の眼が可視波長しか見えないようなものかなと思いました。 つまり、放射線の波長をシンチレーターを通してPMTが感じることができるようにするためのものだと思うのですが、正しいご意見をお教えくださいませんでしょうか?

noname#125519
noname#125519

みんなの回答

  • ZacK3666
  • ベストアンサー率0% (0/0)
回答No.3

おおむねその見解で間違いないかと思います。 PMTが光を受ける感度域には制限があります。要は放射線の波長とPMTが読み取れる波長というのが一致しないことが問題なのです。 この件についてわかりやすい例をあげるとすれば、液体シンチレータが適切かと思います。液体シンチレータは低エネルギーβ線などを測定するものですが、その溶液の中には第1溶媒と第2溶媒入っています。なぜ発光体が2つかと言いますと、これこそがPMTの感度域と一致させるための工夫なのです。第1溶媒が発光した光の波長とPMTの感度域が異なるため、第2溶媒をもって一致を図ります。このようにシンチレータは入射放射線の波長をシフトさせてPMTの感度域と一致させるために用いると考えてください。

回答No.2

云われてみればごもっともな疑問です。 で、云われてみて考えました。結局は効率の問題ではないかと。フォトカソードでの光電効果はγ線でも起きるはずです。ただ可視光に比べて高エネルギーなのですっぽ抜けがち。フォトカソードを厚くしてすっぽ抜けを回避しても、深部で生じた電子は表面に到達して飛び出すまでに至らない、ということではないかと。可視光なら表面付近に光電効果が集中する。 我々の目も、目をつぶってX線やγ線をもろに浴びるとある程度感じます(少なくともX線については自分で経験しました)。でも蛍光板で可視光に変換すると、はっきりと見えます。同じようなことなのだなあ、と思いました。 (間違っていたら、たぶん専門家が訂正してくださると思います。汗)

noname#160321
noname#160321
回答No.1

おしゃる通りであってます。

関連するQ&A

  • シンチレータと光電子増倍管について

    シンチレータから出た光が光電子増倍管に入る割合は、発光場所からみた光電面の立体角に比例しますよね?つまり、発光された光の量に比例するということでしょうか。私はそういうふうに解釈しています。 ところで、実験をしたのですが、比例になりませんでした(泣)立体角の大きさと検出された信号の大きさをグラフにしたんですが、0を通らないし、しっかり比例関係とはいえませんでした。 なぜなんでしょうか?ミュー粒子だけ測定しているわけではないからかなあ。考えられる理由は機器の熱振動や、およびでない光子などのせいだけなのでしょうか?

  • シンチレータの特性について

    シンチレータは粒子線やX線を可視光付近の光に変換するとのことです。 シンチレーション効率(蛍光効率?光出力比?)という、 シンチレータに吸収された入射粒子線・入射X線のエネルギーのうち、 どのくらいの割合が可視光付近の光エネルギーに変換されたかを示す指標があるかと思います。 このシンチレーション効率の値を調べたところ、NaI(Tl)が約12%で、 シンチレータ(無機?)の中で最大という話を聞きました。(そして、多数の3eVの光子に変換される) つまり、例えば0.5MeVのガンマ線のエネルギーがNaI(Tl)シンチレータに付与された場合、 .0.5MeV×0.12=60keV分が3eV可視光に変換され、 20000個のシンチレーション光子(60keV=3eV×20000個)が生成されるかと思います。 0.5MeVのうち、わずか12%の60keV分しかシンチレーション光に変換されないのは 効率が悪すぎるような気がしますが、仕方ないのでしょうか? また、残りの88%はどうなってしまうのでしょうか? 他にも、生成するシンチレーション光は等方的に発生するので、 後段のフォトマルやフォトダイオードへ入射するシンチレーション光も制限されるような気がします。 (有限な集光効率の存在) 以上より、粒子線やX線をシンチレータ経由で測定するとき、かなりの損失がある上で 測定しているのではないかという疑問があります。皆さんのご意見を伺いたいです。

  • 光合成・視覚

     光合成のためには、可視光領域の光を全て用いるほうが良く、吸収スペクトルの幅が広いほうが良いと考ることができ、視覚は波長(色)識別をしており、吸収スペクトルの幅は狭いほうが高精度の波長識別ができると考えられます。  しかし、実際には、光合成を行うクロロフィルの吸収スペクトルの幅は狭く、視覚を担う視物質の吸収スペクトルの幅は広いのはなぜでしょうか?理由がわかりません。本当に困っています。お願い致します。

  • 電磁波が量子論として扱える周波数はどの位から?

    光は波である同時に粒子であるといいます。光の波長により粒子としてのエネルギーが異なります。赤外線など光の中でも波長の長いものはそれほど人体に悪影響はないですが可視光を超え紫外線ーX線と短くなるにつれ悪影響を及ぼします。この粒子(量子)エネルギーと周波数の関係において量子として扱える周波数はどのくらいからになるのでしょうか。携帯電話の電磁波のような1~2GHzでも量子エネルギーを放っているのでしょうか?

  • 高校物理 吸収スペクトルと線スペクトルについて

    高校の教科書で納得のいかないところがあるのでどなたか教えていただけないでしょうか? (1)ナトリウム灯ってそもそもナトリウムが熱で光っているのでしょうか?まぁそうだと仮定して、特定の原子から出た光を分光器にかけると黄色い線スペクトルが現れる。つまり特定の原子からでた光は特定の長さの波長の光をだすという理解でいいのでしょうか? (2)連続スペクトルに現れた、Naの吸収スペクトル(暗線)の写真を見ますと、(1)の線スペクトルと同じ波長が今度は暗線になっています。これはNa原子が光に当たると(1)と同じ波長の光を吸収するからだと考えていいのでしょうか? そもそも光を発するか、光に当たるかの違いと考えていいのでしょうか?参考書には「低音の気体が高温の気体の出す光を吸収する」などと書いてありますがイメージできません。 そもそも吸収スペクトルってどういう状況で作り出すことができるのでしょうか。 どなたかわかりやすく教えていただけないでしょうか?

  • 熱放射(輻射)の基本的なことを教えてください

     熱放射で出される電磁波は、人体や地球放射などは赤外線領域で、赤外線を熱線と呼んだりするかと思いますが、太陽では熱放射として可視光や紫外線が出ていると思います。この場合でも、熱放射の出るミクロな場面では、分極した分子の運動ととらえてよいのでしょうか。  吸収の場面では、紫外線は電子遷移や光解離として吸収されますが、放射の場面でも同じ仕組みで、電子遷移なのでしょうか。光解離で放射というのは、考えにくいように思いますが、、、  黒体放射のスペクトルが、温度によっては、UVから可視光、赤外線となめらかなカーブになりますが、これは、同じ放射の仕組みによるのでしょうか。あるいは、波長域でよって、核融合だったり、電子遷移だったり、双極子モーメントの運動だったり、もとの反応は様々でもエネルギーとしてはなめらかに曲線になるのでしょうか。  少し違う話ですが、あらゆる物体は温度に応じた電磁波を出す、とよくいわれますが、大気中の窒素や酸素など双極子モーメントをもたない気体分子も、温度におうじた電磁波を出しているのでしょうか。  CO2やH2Oなど気体分子が吸収のピーク波長をするどく持つのに対し、多くの固体は黒体に近似できる場合が多いようですが、固体では、さまざまな分極した分子の運動が生じうるからということなのでしょうか?  また、最初の質問と少し、だぶりますが、固体の温度が上がり、赤外線から可視光にかわるときには、固体のなかでの電磁波を発する仕組みも違うものになるのでしょうか? あるいは、いつでも、原子や分子の熱運動といっていいのでしょうか。  とりとめのない質問になってしまいましたが、可能な部分だけでも、教えていただけましたら助かります。

  • 白熱灯の照度から放射照度への換算

    大学の卒論の一部で白熱灯の照度から放射照度への換算をしています. 測定された照度 (lx): L 可視光範囲での放射照度(w/m2): I' 赤外光も含めた放射密度(w/m2): I 標準比視感度曲線: f(l) 光源のスペクトル:g(l) 換算係数:k としたとき, k=I'/INT[f(λ)×g(λ)380、780,λ] I'=L/250 I=I/INT[k×g(λ)、0、+∞、λ] としてもとまるのでしょうか? I'=L/250の250は可視光範囲での照度から放射照度への換算係数という のを調べて用いました.また集めることが出来たデータで光のスペクトル分布から積分するにも単位をどう揃えればよいかわかりません. 持っているデータだと横軸に波長(nm),縦軸に相対エネルギー(%)で白熱灯のスペクトル分布と比視感度曲線が描かれています.相対エネルギーというのが実際よくわかりません.相対値からどうやって(W/m^2)に変換するのでしょうか…

  • 大気エアロゾル

    以下の質問文においても誤った理解をしている可能性があります。その点につきましてはどうかご容赦頂きたく存じます。又、その誤って理解している点についてもご指摘頂ければ幸いです。 ----------------------------[以下質問文]------------------------  理論的に電磁波(光)の波長が物体の粒径よりも小さければ捕捉する(見る)ことが可能だったと思います。そこで疑問なのですが、  大気エアロゾル粒子は太陽光を吸収、散乱する作用があり、普通のカメラには写らない(可視光画像では撮影できない)という旨の記述を読んだ覚えがあるのですが、もし、エアロゾル粒子の粒径の方が可視光の波長より大きい場合は普通のカメラに写る(可視光画像で撮影できる)可能性はあるのでしょうか。

  • 電気パルスについて(宇宙線実験)

    宇宙線をプラスティックシンチレーターで光に変え、フォトマルで光電子を増倍させてからディスクリミネーターでデジタルパルスに変換して粒子数をカウントする という非常に基礎的な実験についてなんですがいろいろわからないことがあります。 1.パルスはオシロスコープで見ると、縦軸が電圧、横軸が時間として波形が観測されますが何故電圧が測れるのでしょうか?フォトマルによって電子が増倍された直後、導線を通る電子が増えて電流が増えるのはわかりますが、それをオシロの内部でオームの法則を計算して電圧を割り出しているのですか? 2.デジタルパルスにする理由についてですが、ある一定以上の電圧を持ったアナログパルスをデジタルパルスに変換することによりディスクリミネーター内でそれをカウントできるということですか?だとしてもそれ以外に利点はあるのですか? 少々長くなってしまいましたがお願いします。

  • 光ファイバに可視光を流したら・・・

    仕事で光ファイバを使っている者です。 今度、多量の光ファイバの中から、必要とする心線を用意に検出できるよう、可視光っを送出できる装置を購入しようと思っています。 しかしながら、「可視光を光ファイバに接続されている装置に送ると、装置の故障や通信に影響及ぼす」と言われました。 ほんとうに装置や通信に影響するのでしょうか? 可視光源の波長は0.65μmくらいなので、波長自体は通信とかには影響しないのではと思っています。 また、可視光が使えない場合、それに変わるものはあるのでしょうか? また、可視光は何m先まで届くものなのでしょうか? ご教授方、宜しくお願いいたします。