- ベストアンサー
- すぐに回答を!
軌跡の問題
- みんなの回答 (1)
- 専門家の回答
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.1
- Mr_Holland
- ベストアンサー率56% (890/1576)
点(3,0)を通る直線は 傾きをmと置くと y=m(x-3) と表せます。 これを円の方程式に代入してxの2次方程式 (m^2+1)x^2-2(3m^2+1)x+9m^2=0 を得ます。 この2次方程式の判別式を4で割ったものをDと置けば D=(3m^2+1)^2-9m^2(m^2+1)>0 ∴-1/√3 < m < 1/√3 ・・・・・・・・・・(1) 線分ABの中点M(X,Y)と置きますと、Xは2次方程式の解と係数の関係から X=(3m^2+1)/(m^2+1) =3-2/(m^2+1) ・・・・・・・・・・・(2) また点Mは直線 y=m(x-3) 上の点なので、 Y=2m/(m^2+1) ・・・・・・・・・・(3) Y=m(X-3) から m≠0 のとき m=Y/(X-3) これを式(2)に代入して整理すると (X-2)^2+Y^2=1 ・・・・・・・・・・・☆ m=0 のときX=1,Y=0 で式☆を満足させます。 -1/√3 < m < 1/√3 は 1 ≦ X<3/2 に対応しますので、求める軌跡は 点(2,0を中心とした半径1の円周(X-2)^2+Y^2=1 上で 1≦X<3/2 の範囲になります。
関連するQ&A
- 軌跡の問題なんですが…
軌跡の問題なんですが… 問題文 円C,X^2+Y^2=1と 直線L,y=a(X-2)がある。 CとLは異なる二点で交わる。 このときの二点を結ぶ線分の中点の軌跡を求めたい。 交点を結ぶ線分の中点を P(x,y)とする。 このあとは、写真に問題があります。 よろしくお願いします
- ベストアンサー
- 数学・算数
- 数学 軌跡の問題です。
数学 軌跡の問題です。 xy平面上に存在する円Cは、その方程式はx^2+y^2=1である。また、点A(3,3)、点B(5,1)があり、線分AB上の点Pは、AB間を動く(両端を含む)。点Pから円Cに引いた2本の接線の、接点同士を結んだ線分の中点Qの軌跡を求めよ。 という問題があります。奇跡の方程式は、なんとかぐちゃぐちゃになりながらも、 (x-(1/12))^2+(y-(1/12))^2=(√2/12)^2 という風になったのですが、(答がないのであっているかは不明。) 点Qが動く範囲が分かりません。 どうやって求めるか教えてください。 (とりあえず原点は不適であることはわかります。)
- ベストアンサー
- 数学・算数
- 軌跡の問題
点(8,0)を通る直線と円x^2+y^2=25によって切り取られる弦の中点の軌跡を求めよ。 この問題がまったくとけません・・・ 以下途中までですが自分の考えです 点(8,0)を通る直線をy=m(x-8)とおきます(∵y軸と平行になることがありえないため) これを円の方程式に代入して x^2+m^2(x-8)^2=25 つまり(m^2+1)x^2-16m^2x+64m^2-25=0 この方程式の2解をA、Bとおくと、この2つの数字はこれらの直線と円の交点のx座標を表すため、求める軌跡上の点をM(X、Y)とすると、解と係数の関係から X=(A+B)/2=8m^2/(m^2+1) また、直線の方程式から Y=m(X-8)=-8m/(m^2+1) ここで止まってしまいました・・・ ここから先の計算は複雑すぎてとけませんでした 私のやり方は根本的にまちがっていたのでしょうか? どなたかヒントをよろしくおねがいいたします
- 締切済み
- 数学・算数
- 数学 軌跡の問題
解答のミスを教えてほしいです。 グラフは分かりにくいかもしれないですが、添付しておきました。 見てからじゃないとわかりにくいと思います。 -2点A(-1,5)B(7,-1)から等距離にある点Pの軌跡を求めよ。 という問題で、私の答えが 添付ファイルのピンクの線が奇跡の答えだと思いました。 ピンクの線はABの垂直2等分線。 ↓AB↓ 5=-a+b -1=7a+b これを解いてa=-3/4・b=17/4 なのでABはy=-3/4x+17/4 軌跡はこれに垂直なのでy=4/3x+b ↓ABの中点(緑の点)↓ (x,y)=(|7-(-1)|/2,|-1-5|/2)=(4,3) 軌跡はこの中点(4,3)を通るので、y=4/3x+bに代入して解くと、 b=-7/3と出ました。 これを入れるとy=-4/3x-7/3 両辺に3をかけて、右辺を左辺に移行させると、4x-3y-7=0 よって軌跡(ピンクの線)は4x-3y-7=0 という解答になったんですが…… 実際の答えは4x-3y-”6”=0でした。 どこが違うのか自分ではよく分からなかったので、間違いを教えてくださいませんか? 他のやり方もありますが、ここでの方法でお願いします。 あと式が見にくいかもしれませんので・・・ 『x』(エックスです。かけるじゃないです。) 『4/3』(3分の4です) 『|~|』(||は絶対値です。) んなもん分かるわ!という方、スミマセン・・・。 結構しょうもないミスだったら、申し訳ないのですが、多分そうな気がします← よろしくお願いします。
- ベストアンサー
- 数学・算数
- 数学の軌跡の問題
大学入試問題集の数学の軌跡の問題について質問です。 問題・・・ 座標平面上に2点O(0,0),A(2,4)と円;x^2+y^2=64がある、また、Pをこの円周上の点とし、2点P,Aを通る弦をPQとする。 点Pが円周上を動くとき、弦PQの中点をMとして、動点Mの軌跡の方程式を求めよ。 答え・・・弦PQは点A(2,4)を通るから、 a(x-2)+b(y-4)=0とおけ、 (1) PQの中点Mを通る直線OMは、bx-ay=0 (2)とおける。 (1)、(2)をみたす実数a.b(a^2+b^2≠0)が存在するためのx,yの条件を求める という流れなのですが、(a^2+b^2≠0)というのがどこからでたのかがわかりません。 あと、(1)と(2)の式は、中点Mをa,bとおくと、OMはbx-ay=0 ・・・(2) 中天MはOから直線PQにおろした垂線の足であるので、PQの傾きは-a/b. PQは点A(2,4)をとおるのでy=-a/b.(X-2)+4なのでa(x-2)+b(y-4)=0・・・(1) とおける。というやり方で導いたのですが、違いますでしょうか?
- ベストアンサー
- 数学・算数
- 軌跡の問題が分かりません
問題:点A(6,0)と円x~2+y~2=16上の点Qを結ぶ線分AQの中点をPとする。Qがこの円上を動くとき、点Pの軌跡を求めよ。 解:点P,Qの座標を、それぞれ(x,y),(s,t)とする。 Qは円x~2+y~2=16上にあるから s~2+y~2=16・・・(1) Pは線分AQの中点であるから x=6+s/2 y=t/2 ゆえにs=2x-6 t=2y これを(1)に代入すると (2x-6)~2+(2y)~2=16 すなわち(x-3)~2+y~2=4・・・(2) 逆に、円(2)上の任意の点は、条件を満たす。 よって、求める軌跡は、中心が(3,0)半径が2の円である。 <~2は2乗の意> 疑問:(1)にx=6+s/2 y=t/2を代入すると、なぜ点Pの軌跡が出てくるのでしょうか。よく分かりません。 よろしくお願いします。
- 締切済み
- 数学・算数
質問者からのお礼
ありがとうございます よくわかりました。 テストを頑張ってきます