- 締切済み
- すぐに回答を!
軌跡の問題
点(8,0)を通る直線と円x^2+y^2=25によって切り取られる弦の中点の軌跡を求めよ。 この問題がまったくとけません・・・ 以下途中までですが自分の考えです 点(8,0)を通る直線をy=m(x-8)とおきます(∵y軸と平行になることがありえないため) これを円の方程式に代入して x^2+m^2(x-8)^2=25 つまり(m^2+1)x^2-16m^2x+64m^2-25=0 この方程式の2解をA、Bとおくと、この2つの数字はこれらの直線と円の交点のx座標を表すため、求める軌跡上の点をM(X、Y)とすると、解と係数の関係から X=(A+B)/2=8m^2/(m^2+1) また、直線の方程式から Y=m(X-8)=-8m/(m^2+1) ここで止まってしまいました・・・ ここから先の計算は複雑すぎてとけませんでした 私のやり方は根本的にまちがっていたのでしょうか? どなたかヒントをよろしくおねがいいたします
- corum
- お礼率14% (40/274)
- 数学・算数
- 回答数1
- ありがとう数0
- みんなの回答 (1)
- 専門家の回答
みんなの回答
関連するQ&A
- 数学の軌跡の問題
大学入試問題集の数学の軌跡の問題について質問です。 問題・・・ 座標平面上に2点O(0,0),A(2,4)と円;x^2+y^2=64がある、また、Pをこの円周上の点とし、2点P,Aを通る弦をPQとする。 点Pが円周上を動くとき、弦PQの中点をMとして、動点Mの軌跡の方程式を求めよ。 答え・・・弦PQは点A(2,4)を通るから、 a(x-2)+b(y-4)=0とおけ、 (1) PQの中点Mを通る直線OMは、bx-ay=0 (2)とおける。 (1)、(2)をみたす実数a.b(a^2+b^2≠0)が存在するためのx,yの条件を求める という流れなのですが、(a^2+b^2≠0)というのがどこからでたのかがわかりません。 あと、(1)と(2)の式は、中点Mをa,bとおくと、OMはbx-ay=0 ・・・(2) 中天MはOから直線PQにおろした垂線の足であるので、PQの傾きは-a/b. PQは点A(2,4)をとおるのでy=-a/b.(X-2)+4なのでa(x-2)+b(y-4)=0・・・(1) とおける。というやり方で導いたのですが、違いますでしょうか?
- ベストアンサー
- 数学・算数
- 軌跡の問題なんですが…
軌跡の問題なんですが… 問題文 円C,X^2+Y^2=1と 直線L,y=a(X-2)がある。 CとLは異なる二点で交わる。 このときの二点を結ぶ線分の中点の軌跡を求めたい。 交点を結ぶ線分の中点を P(x,y)とする。 このあとは、写真に問題があります。 よろしくお願いします
- ベストアンサー
- 数学・算数
- 軌跡の問題で
L1:mx-y+2m=0・・・(1) L2:x+my-2=0・・・(2) mが全ての実数値をとるとき、L1とL2の交点Pの軌跡を求めよ。 という問題で、私は次のように考えました。 「適当な実数mを用いて(1)(2)と表せる」ということは 「mについての方程式(1)(2)が共通の実数解をもつ」と言い換えられる (2)より、m=(2-x)/y・・・(3) (1)(2)が共通の実数解をもつということは、(2)のただ1つの解(3)が(1)においても成り立つときである。 これを(1)に代入して整理すると、 x^2+y^2=4 故にPの軌跡は、円x^2+y^2=4の周上である。 しかし、答えは「x^2+y^2=4の周上、しかし(-2,0)を例外とする」になっていました。この例外はどういう手順で求められるのでしょうか。
- ベストアンサー
- 数学・算数