• ベストアンサー

微分方程式の特解計算について。

現在、画像のような微分方程式を解いています。 左辺=0の同次解は容易に求めれるのですが、どうも特解(画像で言うとV(r,θ)です) が計算出来ません。 その原因が、右辺のベッセル関数です。 これまでは右辺が簡単なrのべき乗であったので単純に右辺を2回積分した関数形で 特解を仮定し、左辺に代入した後に係数比較で求めれました。 ところが、ベッセル関数が今回はあるのでどうしたら良いかわかりません。 何かいい方法ないでしょうか? ちょっとしたことでも何か提案がありましたらお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • kiyos06
  • ベストアンサー率82% (64/78)
回答No.1

1)ベッセル関数でも級数展開することにより同じようにできるでしょう。 2)YahooやGoogleで「ベッセル関数」を検索する。

dothesex
質問者

補足

級数展開せずに出来ます。 あまり意味のない回答に非感謝です。

関連するQ&A

  • 非同次線形微分方程式の解

    非同次線形微分方程式の解は、 「同次線形微分方程式の一般解+特殊解」 だと思うのですが、このとき、 「【同次線形微分方程式の一般解】は、非同次線形微分方程式の解である。」と言えるのでしょうか?

  • ベッセルの微分方程式

    テキストによると、円筒座標系での電磁場のマクスウェル方程式を磁場に関して解いて得られる方程式が f’’+1/x*f’+k^2*f=0 解はベッセル関数 AJ0(kx)+BY0(kx) A,Bは定数 しかしこの方程式は一般的なベッセルの微分方程式と少し違います。 x^2f’’+xf’+x^2f=0 x^2で割り算してるのはともかく、係数kの分だけ違うのです。これでもベッセルの微分方程式であり解はベッセル関数であると言えるのでしょうか?

  • 1階非同次微分方程式の一般解について

    1階非同次微分方程式の一般解の解釈について不明点がございます。 一般化した1階非同次微分方程式:y' + p(x)y = q(x)の一般解は y = e^(-∫p(x)dx) * ∫q(x)e^(∫p(x)dx)dx + ce^(-∫p(x)dx) で表されるのは理解できるのですが、この一般解が非同次微分方程式の特殊解と同次微分方程式の一般解の和になっていることが理解できません。 つまり右辺の1項目、e^(-∫p(x)dx) * ∫q(x)e^(∫p(x)dx)dx が非同次方程式の特殊解になる理由がわかりません。 個人的に考えるに右辺の2項目のcが-∞~∞まで全ての値をとることが可能なので c=0の場合に、右辺の1項目は非同次方程式の特殊解になる、と勝手に推測しているのですがその考えでよろしいでしょうか? どなたかその辺詳しい方がいらっしゃいましたら是非ご教授お願い致します。

  • 微分方程式について。

    微分方程式の一般解をもとめます。 (1)dy/dx=(y^2)+y これは、線形微分方程式を使ってとくのでしょうか?? (2)(x-y)y'=2y 同次形で解きましたが 途中の式、 ∫du(1-u)/(u+u^2)=∫1/xでの右辺の積分がわかりません。 両者の解答の導き方を教えてください。お願いします。

  • 変形ベッセル関数の微分について。

    変形ベッセル関数の微分について。 添付画像の一行目の式が微分公式です。 そこで質問ですが、二行目の式の左辺のようにベッセル関数の引数に係数が かかった場合は、二行目の式の右辺のようになりますか?

  • 微分方程式について

    よく微分方程式を解いていると、右辺と左辺両方に求めたいf(x)やyが残ったものが解になったりします。 それはf(x)を求めたいのに右辺にも残ることは解として認められるのでしょうか。

  • 微分方程式 一般解の求める問題でで特解が求められません

    y"-3y´+2y =(e^x)/x (x>0) 上の微分方程式を解く(一般解を求める)のですが、未定係数法を使っても(どういう形の特解なのかも予想付かず)できませんでした。。 どなたか教えて頂けませんか? 

  • 線形非同次微分方程式の解法について

    線形非同次微分方程式の一般解は  同次方程式の一般解+特解 で求められるそうですが、何故、このようにして求められるかが分かりません。分かる方がいましたら教えてください。

  • 偏微分方程式の解について。

    現在、私は3変数(x、y、z)2階の偏微分方程式を解いています。 その同次解を導いています。 まず、変数の一般解をΣX(r)*(cosmθ)、ΣY(r)*(cosmθ)、ΣZ(r)*(cosmθ)と仮定し元の式に代入したのち、r=exp(s)と変数変換します。 そして同次解の形をX=X'exp(λs),Y=Y'exp(λs),Z=Z'exp(λs)のように仮定し代入することによって、自明でない解をもつ次の特性方程式を得ました。 p^3+d*p+f=0 このときp=(λ^2-A)とします。 またAとdとfは定数です。 ここから解を導くのですが λ^2=p+A>0のときは、 X=F*exp(λs)+S*exp(λs)  =F*r^λ+S*r^(-λ) このときのF,Sは勝手においた未知数です。 とまずおきました。 次にXを既知だと仮定し、YとZの関係を求めるのですが、 関数型はXと同様のために、F=1として 同次解を仮定して代入した式で計算してYとZの関係を導きました。 (簡単な2次方程式を解く作業です) 同様にS=1としても行いました。 そこで以下の解を得ました。 Y=G(λ)*F*r^λ+G(-λ)*S*r^(-λ) Z=H(λ)*F*r^λ+H(-λ)*S*r^(-λ) G(λ)とH(λ)は2次方程式を解いて出した関係式です。 次がわからないところです。 λ^2=p+A<0の場合、つまりλの根が複素数の場合です。 上と同様に係数を比較して求めるのですが、 X=F*cos(λs)+S*sin(λs) と仮定するところまではわかりますが、 その仮定によって Y={Re[G(j*λ)]cos(λs)-Im[G(j*λ)]sin(λs)}*F +{Im[G(j*λ)]cos(λs)+Re[G(j*λ)]sin(λs)}*S となるのがわかりません。Zについても式の形は同様です。 本当に困っています。 意味がわからない文章かもしれませんが、汲み取っていただけると幸いです。 ヒントでもいいのでください。 ちなみに 実部については G(j*λ)=G(j*-λ)が成り立ち      虚数部については G(j*λ)=-G(j*-λ)が成り立っております。

  • 微分方程式

    第1問 dy   y~2-x~2 --=--------- (ヒントz=y/xと置換しなさい) dx    2xy 第2問 一階線形微分方程式  dy --+ycosx=sinx×cosx---(1)がある dx 1、この方程式の同次の微分方程式を解きなさい 2、定数変化法により、この微分方程式(1)の特解を求めなさい。 また、その時の一般解を求めなさい