- 締切済み
- すぐに回答を!
微分方程式の勉強をしていてわからないところがあり、困ってます。
微分方程式の勉強をしていてわからないところがあり、困ってます。 わかる方がいたら教えてください。 次の曲線群の微分方程式を求めよ。 (1)ax?+bx?=1 答え。yy’ = xy’?+xyy’’ ( ?は二乗です。) 次の微分方程式を解け。 (1)y?dx-x?dy=0 (2)cosxcos?y+y’sin?xsiny=0 答え (1)y=2x?/(cx?+1) (2)sinx-cosy=csinxcosy 次の微分方程式を()内の初条件のもとで解け。 (1)ルートx かける y’ = ルート(y+1) (x=0,y=3) 答え y=x+4ルートx+3 おねがいします。
- tamamori
- お礼率18% (2/11)
- 回答数1
- 閲覧数165
- ありがとう数0
みんなの回答
- 回答No.1
- info22_
- ベストアンサー率67% (2650/3922)
答えが分かっていて何が分からないですか? 問題集の問題と答えを羅列しないで あなたが自力でやった解答を補足に書いて行き詰って分からない所を質問して下さい。
関連するQ&A
- 微分方程式についてわからないことが・・・
今 y'=-1/xy の微分方程式をときました。 ∫y dy=∫-x dx 1/2×y^2=-log|x|+C =-log{Cx{ e^(1/2×y^2)=-|Cx| =Cx これを微分方程式の解とします。 これを微分して与式になることを確認したいのですが 答えの両辺をxで微分して ye^(1/2×y^2)×y'=C 両辺にxかけて xyy'e(1/2×y^2)=Cx =e^(1/2×y^2) よってy'=1/xy となり-がでてきません。 計算途中でC=±Cとしているので符号がおかしくなるのはわかりますが、確認の際は勝手にそれを考慮して-をつけてもいいのでしょうか? どのように解答をかいていけばいいのでしょうか? わかるかたお願いします。
- ベストアンサー
- 数学・算数
- 微分方程式
微分方程式は問題を解くやり方が異なると答えも若干ことなるのでしょうか? たとえば x^2*y'+y^2=0・・(1) y'=-y^2/x^2 z=y^2/x^2 ・ ・ としていけば y=cx/(x-c) となりますが (1)から dy/y^2=-dx/x^2 ・ ・ y=cx/(x-c) また(1)から完全微分方程式とみなして x^2y+xy^2=c としてもいいのでしょうか? もうひとつ (x+1)y'=x+2y+3 という問いは y’-2y/(x+1)=(x+3)/(x+1) として一階線形微分方程式のように解くと y=(1/(x+1)^2)(x^4/4+3x^2/2+x+log(x+2)+c) とならないでしょうか?
- ベストアンサー
- 数学・算数
- 1階の線形微分方程式
1階の線形微分方程式 次の微分方程式の解き方が分かりません。いちおう、自分でもやりましたが、答えを先生が教えてくれないので困っています。さらに(3)はさっぱりです。 (1)y'+2y=6e^x (2)y'+y=sinx (3)xy'-2y=x^3e^x (1),(2)の自分なりで解いてみた答え (1) λ+2=0 λ= -2 よってこの微分方程式の一般解は y1=Ce^-2x ここで、yp=k1*e^x とおいて、ypを微分方程式内に代入をすると、 yp'+2yp=k1*e^x+2k1*e^x=3k1*e^x=6e^x k1=2 y2=2e^x よって y=y1+y2=C*e^-2x+2e^x (2) λ+1=0 λ= -1 よって、求める一般解は y1=Ce^-x ここで、特殊解を考えると yp=L*sinx+M*cosx yp'=L*cosx-M*sinx これを微分方程式に代入して yp'+yp=(L*sinx+M*cosx)+(L*cosx-M*sinx)=(L-M)sinx+(L+M)cosx ここで、 L-M=1 L+M=0 これを解いて L=1/2,M=-1/2 y2=1/2*sinx-1/2*cosx よって、y=y1+y2=Ce^-x+1/2*sinx-1/2*cosx
- ベストアンサー
- 数学・算数
- 微分方程式の問題教えてください。
解けなくて困っています。 次の微分方程式の解を求めよ。 y' = x+2y / x という問題があります。 答えを見ると y = Cx^2 -x となっています。 自分で解いてみても、 途中で計算が分からなくなってしまいます。 計算過程を教えてくれませんか?
- 締切済み
- 数学・算数
- 微分方程式 線形 非線形 その2
前回の質問内容で、 y・y’+xy=1 が非線形微分方程式であることは理解できました。 >yy' は、y と y' が 1 次づつの積で { y,y',y'',y''',… } については 2 次、 >xy' は、{ y,y',y'',y''',… } に含まれるのが y だけで 1 次です。 ご回答頂いた内容を整理している際に、疑問に感じた点があったので再度 質問させて頂きます。 y’+xy=1 は線形微分方程式ですが、 y’+(x/y)=1も線形微分方程式でしょうか? (x/y)は、yを1次として考えて線形微分方程式なのでは と考えたのですが、正しいでしょうか? 1/yは非線形になるのでしょうか? 同様に、 1/y’+xy=1は非線形微分方程式となるのでしょうか? 1/y,1/y’が線形なのか非線形になるのかがわかりません。 ご回答よろしくお願い致します。
- ベストアンサー
- 数学・算数