• ベストアンサー

離散数学演習問題

離散数学演習問題 小さな添え字であることを表す記号を_を前につけて示しています。 全ての整数からなる集合をZとし、pを自然数とする。 任意のa∈Zに対して、[a]_p={b∈Z|b≡a(mod p)}とする。 また、N={1,2,・・・p}、Z/≡_p={[n]_p|n∈Z}とする。 このとき次の2問を証明してください。 よろしくお願いします。 (1)関数f:N_p→Z/≡_pをf(n)=[n-1]_pにより定めるとき、fは全単射である。 (2)Z/≡_P={[0]_p,[1]_p・・・,[p-1]_p}

質問者が選んだベストアンサー

  • ベストアンサー
  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

(1): f が全単射の定義を満たすことを示せ. (2): 素直に示す.

exymezxy09
質問者

お礼

解答ありがとうございます。 (2)ですが、素直に示すというのはどういうことでしょうか? もう少し、噛み砕いていただけるとありがたいのですが・・・

その他の回答 (1)

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.2

2つの集合 A, B が等しいことを示す素直な方法は A ⊂ B かつ B ⊂ A を示すこと.

exymezxy09
質問者

お礼

お礼が遅くなり申し訳ないです。 何とか証明できました。 どうもありがとうございました。

関連するQ&A

  • 離散数学の証明問題

    離散数学の証明問題 合同でないことを≡×と表します。 Pを素数とし、a≡×0(mod p)とする。また、aの位数をdとする。 このとき、次のことを示せ。 (1)整数nに対して、a^n≡1(mod p)であるならば、かつそのときに限り、d|n (2)dはp-1の約数である。 (3)整数i,jに対してa^i≡a^j (mod p)であるならば、かつそのときに限り、i≡j(mod p) (1)はFermatの小定理を使うと思うのですが、いまいち解法が浮かびません。 (2)はFermatの小定理から自明に思えますが、厳密に証明しないといけないみたいです。 (3)は証明方法がまったく分かりません。 分かる方、証明お願いします。

  • この数学の集合の問題がわからないです。教えてください。

    この数学の集合の問題がわからないです。教えてください。 自然数N={1,2,3・・・} 整数Z={0、±1、±2、±3・・・} このNとZを用いて以下の集合を内包的定義で記述せよ。 1)正の奇数全体 A={1、3、5、7・・・} 2)偶数全体 B={・・・-4、-2、0,2,4・・・} 3)3で割ると2余る整数全体 E={・・・-4、-1,2,5,8・・・} 4)2桁の自然数 F={10,11,12・・・99} 例)正の偶数全体 P={2,4,6・・・} P={2n|n∈N」 これらの答えを教えてください。よろしければちょっとした解説等もあればありがたいです。 よろしくお願いします。

  • 数学IA・黄チャートの問題で、解らない個所があるので教えてください。

    数学IA・黄チャートの問題で、解らない個所があるので教えてください。 Aの集合、包含関係の証明の問題と解答です(以下転写します)。 ------------------------------------------------ 次のことを証明せよ。ただし、Zは整数全体の集合とする。 A={3n-1 | n∈Z}, B={6n+5 | n∈Z} ならば A⊃B x=B ならば x=6n+5(nは整数)と表わされる。 このとき x=6(n+1)-1=3・2(n+1) 2(n+1)は整数であるから x∈A よって、x∈B ならば x∈Aであるから A⊃B ------------------------------------------------ 『2(n+1)は整数であるから x∈A』 のくだりが理解できません。なぜx∈Aになるのでしょうか。 初歩的な質問かもしれませんが、困っています。ご教授ください。 宜しくお願いいたします。

  • Q.無理数全体の集合Pについて|P|>?0を証明せよ。

    Q.無理数全体の集合Pについて|P|>?0を証明せよ。 レポートを提出したのですが、上記の問いのみ、(1)(下記)を中心に説明不十分とコメントされていました。 レポートは合格したので再提出はないのですが、解答はもらえないため、気になります。 どなたか、修正および補足などをお願いします。 A. Nを自然数全体の集合、Zを整数全体の集合、Qを有理数全体の集合、Rを実数全体の集合とする。 |P|≠アレフゼロを背理法で証明する。 |P|=アレフゼロと仮定すると、アレフゼロからPへの全単射が存在する。 アレフゼロ=|N|だから、NからPへの全単射がある。 A={-n|n∈N}とすると、|A|=|N|=|Q|だから、 A→Qの全単射がある。 Z-{0}=A∪N (A∩N=(空集合)) R=P∪Q (P∩Q=(空集合))だから、|N|=|P|、|A|=|Q|だから、 |Z-{0}|=|R| になる。 |N|=|Z-{0}|であるから、アレフゼロ=|N|=|Z-{0}|=|R|となり、矛盾である。 よって、|P|≠アレフゼロとなる。 また、Pは有限集合であるから|P|<アレフゼロではない。 以上により、|P|>アレフゼロとなる。

  • 代数学問題について

    (1)整数a,b,n(n>1)についてa≡b(mod n)ならば、{aをnで割ったときの余りとbをnで割ったときの余りが等しい}を示すとき、の発想が分かりません。どうやって解答をかけばよいのでしょうか?? (2)整数a,b,m(>0),n(n>1)と正の整数kについて、()a≡b(mod mn)ならばa≡b(mond n) ()a≡b(mod n)⇔ka≡kb(mod kn) ()a≡b(mod n)⇔ka≡kb(mod n) を示す方法が分かりません。 (3)(m,n)>1のとき、a≡0(mod m),a≡0(mod n)ならば、a≡0(mod mn)は成り立たないとあったのですが、なぜでしょう?具体例などありますか?どうか教えてくだい!!

  • 数学の濃度の問題

    どなたか、よろしくお願いいたします。 (1),|N*N|=|N| NからN*Nへ全単射の関数を規定したいです。 N*N=(m,n){m,n∈N} (2), N^k={(n1,n2,,nk)|ni∈N,1≦i≦k} |N^k|=|N|(帰納法を用いて) a), K=1 のとき、|N|=|N|であり、明らか。 b), K=m で成り立っているとき、K=m+1でも題意が成り立つことを示す。 T={N^m}S={N} |N^m|=|N| つまりこれは、f:S→T 全単射である。Si=Ti N^(m+1)はN・Ti これは、f:N→N^(m+1) g=N*f 関数gで表わせれる。 もし、Si=Ti であれば gf(si)=N*Si=gf(ti)=N*Tiであり。これは全単射である。 雑すぎて自分でもよくわかっていません。。 (3)S={1,2,3,4.....,10^6} Tを全てのSの部分集合とする。f:T→Sを満たす、 1対1のfが存在しないことを示せ。

  • 数学の問題です。

    すべての整数からなる集合を全体集合とし、その部分集合Xに関する次の条件Pを考える。P:Xの要素のなかで最小の数が存在する。 (1)選択肢の中から、Pであるための必要十分条件を全て選べ。 (2)選択肢の中から、Pであるための必要条件であるが、十分条件でない条件を全て選べ。 (3)選択肢の中から、Pであるための十分条件であるが、必要条件でない条件を全て選べ。 (4)Pの否定をーpとする、全体の中からーpであるための十分条件を全て選べ、 選択肢 A:Xは有限集合である。 B:Xは無限集合である。 C:Xのどの要素よりも小さな整数が存在する D:n∈Xの時n-2∈Xである。 E:Xの要素はすべて自然数である。 F:Xの補集合には最小の数が存在しない Z:A~Fのいずれでもない。

  • 代数学の問題です。

    代数学の問題です。 次の各集合の間の全単射の例を具体的与えることによって示せ。 (?)f:N→Z (?)f:N→N^2 (?)f:N^2→N 具体的な例をどのように書いたらいいのかわかりません。 どなたか詳しく教えていただきたいです!!!!

  • 数学の計算問題です。

    2けたの正の整数nの十の位をa、一の位をbとすると、n = a×10+b (a,bは整数で、1≦a≦9、0≦b≦9)と表せる。 この整数nに、数a+2bを対応させる。例えばn = 36には3+2×6=15が対応し、n = 10には1が対応する。 n、n-1(11≦n≦99)に対応する数をそれぞれp、qとするとき、p -q の値として考えられるものをすべて求めなさい。(解説もよろしくお願いします) 

  • 代数の問題です。

    大学の代数でこのような問題がでて きて、わからないので教えてくださ い 。よろしくお願いします。加法群G=Zの部分群H=nZ(n≧1は 自然数)に関する剰余類aHをa+nZと加 法的に表す。 また、a,b∈Zに対し、a-bがnの倍数 のときa≡b(mod n)と表し、aとbはn を法として合同であるという。 これは、a+nZ=b+nZと同値である。 剰余類の集合G/H=Z/nZをZnと表す。 Cn:位数nの巡回群={e,a,a^2,…a^n-1}a ^n=eとする (1)a≡a′(mod n),b≡b′(mod n)な らば、a+b≡a′+b′(mod n)を示せ 。 これより剰余類の集合Znに(a+Z)+(b+Z )=a+b+Zによって 積(この場合は和)が定義されることを 示し、 Znに群の構造が入ることを示せ。(Zn をnによる剰余類群という。) (2)剰余類群Znは巡回群Cnと同型であ ることを示せ