• ベストアンサー

代数学の問題です。

代数学の問題です。 次の各集合の間の全単射の例を具体的与えることによって示せ。 (?)f:N→Z (?)f:N→N^2 (?)f:N^2→N 具体的な例をどのように書いたらいいのかわかりません。 どなたか詳しく教えていただきたいです!!!!

質問者が選んだベストアンサー

  • ベストアンサー
  • nag0720
  • ベストアンサー率58% (1093/1860)
回答No.1

全単射とは1:1対応のことです。 一例ですが、 f:N→Z 1→0 2→1 3→-1 4→2 5→-2 6→3 7→-3 ・・・・ f:N→N^2 1→(1,1) 2→(1,2) 3→(2,1) 4→(1,3) 5→(2,2) 6→(3,1) 7→(1,4) 8→(2,3) 9→(3,2) 10→(4,1) ・・・・ f:N^2→N 上記の逆対応 関数として書きたいのなら、上記のことを式にすればいいだけです。

関連するQ&A

  • 代数学の問題なのですが

    代数のレポートなのですが、苦手なのでよくわかりません。 一問だけでもいいのでどなたか教えてください。 m、n;互いに素な自然数 f;z/mnz → z/mz×z/nzをf(a+mnz)=(a+mz,a+nz)と定義する。 (1)fはwell-definedであることを示せ。 (2)fは全単射であることを示せ。 (3)fは(z/mnz)* を(z/mz)* × (z/nz)*の上にうつすことを示せ。 (4)(3)を使ってψ(mn)=ψ(m)ψ(n)を示せ。 お願いします。

  • 線形代数学の問題です。

    問題は次の通りです。 R^nからR^mへの線形写像fが全単射ならばn=mであることを示せ。 時間をかけて考えたのですが分からなかったので、 できるだけ詳しく教えてください、お願いします。

  • 離散数学演習問題

    離散数学演習問題 小さな添え字であることを表す記号を_を前につけて示しています。 全ての整数からなる集合をZとし、pを自然数とする。 任意のa∈Zに対して、[a]_p={b∈Z|b≡a(mod p)}とする。 また、N={1,2,・・・p}、Z/≡_p={[n]_p|n∈Z}とする。 このとき次の2問を証明してください。 よろしくお願いします。 (1)関数f:N_p→Z/≡_pをf(n)=[n-1]_pにより定めるとき、fは全単射である。 (2)Z/≡_P={[0]_p,[1]_p・・・,[p-1]_p}

  • 代数の問題です。

    大学の代数でこのような問題がでて きて、わからないので教えてくださ い 。よろしくお願いします。加法群G=Zの部分群H=nZ(n≧1は 自然数)に関する剰余類aHをa+nZと加 法的に表す。 また、a,b∈Zに対し、a-bがnの倍数 のときa≡b(mod n)と表し、aとbはn を法として合同であるという。 これは、a+nZ=b+nZと同値である。 剰余類の集合G/H=Z/nZをZnと表す。 Cn:位数nの巡回群={e,a,a^2,…a^n-1}a ^n=eとする (1)a≡a′(mod n),b≡b′(mod n)な らば、a+b≡a′+b′(mod n)を示せ 。 これより剰余類の集合Znに(a+Z)+(b+Z )=a+b+Zによって 積(この場合は和)が定義されることを 示し、 Znに群の構造が入ることを示せ。(Zn をnによる剰余類群という。) (2)剰余類群Znは巡回群Cnと同型であ ることを示せ

  • 線形代数の問題が分かりません

    線形代数の問題が分かりません {1,2,・・・,n}の置換全体の集合をSnと表すことにする. (1)S3の元σで次が成り立つものをすべて求めよ.   すべてのγ∈S3に対してγσ=σγ (2)Sn(n≧3)の元σで次が成り立つものをすべて求めよ.   すべてのγ∈Snに対してγσ=σγ この二つの問題が分かりません.どなたか分かる方がいらっしゃいましたら教えてください. よろしくお願いします.

  • 代数学の基本定理で

    「代数学の基本定理」 複素数を係数とするn次の代数方程式 a0z^n+a1z^(n-1)+a2z^(n-2)+…+an=0, a0≠0 はn個の根を持つ。 の解として教科書には次のようにあります。 十分大きな正の数Rをとると、 |z|>R で  |a0z^n|>|a1z^(n-1)|+…+|an|≧|(a0z^n+a1z^(n-1)+…+an)-a0z^n| となる。そこでCを|z|=R, f(z)=a0z^n, g(z)=a0z^n+a1z^(n-1)+…+an としてルーシェの定理を適用する。そのとき明らかにf(z)はn個の零点をもつので、g(z)もn個の零点をもつことになる。とあります。 疑問点は、なぜ |a0z^n|>|a1z^(n-1)|+…+|an| になるのかという点です。基本的なことなのでしょうが、解りやすく教えて下さい。

  • 巡回群が加法群Zと同型であることを示す、代数学の問題です。

    Gを巡回群とすると、任意のGの元はa^n(n∈Z)(aは生成元)となり、 f:Z→Gをf(n)=a^nで定める。 このあと全単射を示すところで単射を示す際、 a^n=a^m から、  n=m とできますか? また、ここまでのやり方はあってますか? 回答お願いします。

  • 線形代数の写像の問題です

    教科書の問題ですが、 「集合A,Bがそれぞれm,n個の元からなるとする。 1)AからBへの写像の個数を求めよ。 2)AからBへの単射の個数を求めよ。 3)AからBへの全単射の個数を求めよ。」 質問です。f:A→Bが写像なので、m個だと思いましたが、1)の答えはn^m、2)の答えはm≦nの時、nPm、3)の答えはm=nの時m!となっています。 どのように理解したらよいのか分かりません。 よろしくお願いします。

  • 写像の証明問題です。よろしくお願いします。

    写像の問題です。よろしくお願いします。 (1)2つの写像f:X→Y、f:Y→Zがある。g・fが全射ならばgは全射であるとする。ここでさらにgが単射であると仮定すればfも全射となることを証明せよ。 (2)自然数Nと零を合わせた集合N∪{0}から整数の集合Zへの写像で、全単射となるものを構成し、その理由を説明せよ。

  • ある3元の代数系で 0^0=1 とすることについて

    体と言われる代数系においては、0に逆元0^-1はありません。 従って、0^0=0^-1*0^1=1 とはされていません。 逆に言えば、体でなければ、0に逆元が存在し、0^0=1 とすることができるだろうと予想されます。 この質問では、以前の質問の回答を踏まえて、3元で考えます。 http://okwave.jp/qa/q7989312.html 次のような代数系を定義します。 -- ここから -- 集合X = {0, 1, Z} とする。 加法を次のように定義する。 0+0=0, 0+1=1, 0+Z=Z 1+0=1, 1+1=0, 1+Z=Z Z+0=Z, Z+1=Z, Z+Z=Z 乗法を次のように定義する。 0*0=0, 0*1=0, 0*Z=1 1*0=0, 1*1=1, 1*Z=Z Z*0=1, Z*1=Z, Z*Z=Z この代数系では、体での基本法則は以下のようになる。 ・加法において、交換法則と結合法則は成立する。 ・加法単位元は0で、Z以外は逆元 -0=0, -1=1 が存在する。 ・乗法において、交換法則は成立する。 ・乗法において、Zを除いた0, 1で結合法則は成立する。 ・乗法単位元は1で、逆元 1/0=Z, 1/1=1, 1/Z=0 が存在する。 ・Zを除いた0, 1で分配法則は成立する。 ・0≠1。 つまり、Zを除けば、この代数系は体になる。 -- ここまで -- この代数系で、べき乗を定義します。 べき乗:a^1=a, a^(n+1)=a^n*a より 0^1=0, 0^2=0, 0^3=0, … 1^1=1, 1^2=1, 1^3=1, … Z^1=Z, Z^2=Z, Z^3=Z, … さらに a^-1=1/a, a^-n=(a^-1)^n より 0^-1=Z, 0^-2=Z, 0^-3=Z, … 1^-1=1, 1^-2=1, 1^-3=1, … Z^-1=0, Z^-2=0, Z^-3=0, … そして a^0=a^-1*a より 0^0=1 1^0=1 Z^0=1 となります。 以上の結果から、次のことが分かります。 加法の単位元を0で表し、乗法の単位元を1で表すとき、0^0=1となる。 …という例が存在する。 つまり、体に0の逆元を添加し、分配法則が成立しない代数系では、0^0=1となることがある。 ここまでの計算とこの結論は妥当ですか?