ベストアンサー 関数exp(sin(x))は不定積分が陽な表現を持ちますか? 2010/05/20 14:45 関数exp(sin(x))は不定積分が陽な表現を持ちますか? みんなの回答 (1) 専門家の回答 質問者が選んだベストアンサー ベストアンサー info22_ ベストアンサー率67% (2650/3922) 2010/05/20 16:00 回答No.1 >不定積分が陽な表現を持ちますか? 積分結果を関数形式で表せません。 この種の積分は被積分関数をテーラー展開したものを積分して級数和で表すしかないですね。 [参考]添付はWolframAlphaサイトで積分した結果です。 画像を拡大する 質問者 お礼 2010/06/05 18:12 詳しい回答ありがとうございます。返答が遅くなってしまい申し訳ありませんでした。 通報する ありがとう 0 カテゴリ 学問・教育数学・算数 関連するQ&A sin(x^2)やcos(x^2)の不定積分 sin(x^2)やcos(x^2)の不定積分が初等関数で表せないことはexp(-x^2)の不定積分が初等関数にならないことと、同様に証明できるはずだと思うのですが、どのようにして証明されるのでしょうか。「Mathematicaでできないからできない。」というようなことではなく、きちんとした論証を知りたいのです。 sinの不定積分についての質問です。 sinの不定積分についての質問です。 ∫sin^2xdxという不定積分なのですが、∫sin^2x^1+1/1+1=sin^2x^2/2というところまではやってみたのですが(あっているかはわからないのですが)、ここからどうしていいのか分からず困っています。これが最終的な答えになるのでしょうか?数学があまり得意ではないので詳しく説明してくださるとうれしいです。 積分 exp x^(5/2)exp(ax) a>0 の不定積分って求められるのでしょうか? (1)∫sin^2dxの不定積分を求めよ (1)∫sin^2dxの不定積分を求めよ (2)x=sintと置換して∫√1-x^2dxの不定積分を求めよ (3)4x(1-x)=1-(2x-1)^2を利用して、 ∫dx/√x(1-x)=∫2dx/√4x-4x^2の不定積分をを求めよ 不定積分 以下に示す不定積分が解けません。 どなたかお分かりになる方がいらっしゃいましたら アドバイスよろしくお願い致します。 【問題】 exp(-x^2)を不定積分を求めよ。 「微分」と「導関数」 「不定積分」と「原始関数」 高校で授業をしていてふと疑問に思ったことです。 手元の高校の教科書(数研)では「導関数を求めること」を「微分する」と表現していて、 「微分」という言葉は演算を表す動詞で、その結果を表す名詞(?)ではないようなのですが、 f(x)に対してf'(x)のことを「fの微分」とも呼びませんでしたっけ? 同じように積分に関してなんですが、 教科書では「F'(x)=f(x)であるF(x)をf(x)の不定積分または原始関数という」となっているんですが、 この「不定積分」と「原始関数」ってもともと別に定義していたように思うのです。 どうも、用語の使い分けが混乱しているので、 「微分」と「導関数」 「不定積分」と「原始関数」 この正式な使い分けについて、教えてほしいのです。 もっとも、高校ではあまり厳密にうだうだ言ってもかえって混乱するので、ある程度で流すわけですが。。。 よろしくお願いします。 不定積分を教えてください! exp(ax)*x^(-1) の不定積分を教えてください!宿題とかではなく普通に疑問に思いました。お願いします。 不定積分 ベッセル関数のPDF資料を見ていて、以下の不定積分がでてきました。 int_ { exp(-t*t) } dt = exp(-t*t) / (-2t) - int_ { exp(-t*t) / (2 * t * t) } dt ここでint_は積分記号を表し、expは指数を求める計算です。 不定積分の式 u'v = uv - int_ { u v' } を使って解こうとしたのですが、うまくいきませんでした。 よろしくお願いいたします。 不定積分 不定積分の問題です。 ∫{exp(x/a)+exp(-x/a)}dx (a≠0) =a(e^x/a-e^-x/a) となるらしいのですが・・expはどのような意味なのか分からないので、解きようがありません。 回答お願いします。 不定積分できる! 質問サイトなのにタイトルが肯定文なところに惹かれて来てくだっさたあなたに質問です。 私は基本的な不定積分(高校くらいまでで∧難しすぎないもの)ならできるつもりです。 しかし、三角関数の不定積分がよくわかりません。 たとえば、次の関数の不定積分を求めよ。(xは省略) ア) tan/cos , イ) cos^4 , ウ) 1/sin , エ) (tan/cos)^2 , オ) tan^4 , カ) 1/cos^4 きっとどうせ、置換積分法か部分積分法か式変形の組合せで解くのだと思いますが、三角関数の不定積分は紛らわしいです。 問題の式をちょっと見ただけですぐに解法が思いつくにはどうすればいいのでしょうか。 (別にアからカの答えを聞いているわけではありません。一応なんとか解けます) 裏技数学、不定積分∫x^2 sin x dx ある本に、不定積分 ∫x^2 sin x dx が40秒で解けると書いてありました。 普通の解法は部分積分を2回用いる方法だと思います。 裏技の解法を教えていただきたいです。 ∫sin^-1xdxの不定積分 ∫sin^-1xdx という不定積分の問題なんですが,以下のように解いて見ました。 ∫sin^-1xdx =xsin^-1x-∫sin^-1xdx =xsin^-1x-∫x/√(1-x^2)dx =xsin^-1x+√(1-x^2)+C 途中式など展開はこれであってます?教えて下さい。 (cos(x))^1/2の不定積分 簡単かもしれませんが、(cos(x))^1/2の不定積分がわかりません。 t=(cos(x))^1/2=√(cos(x))とおいてみたんですが、複雑な無理関数になってしまいました。これでしか解けないのでしょうか? もっと簡単な三角関数の変換などがあったら教えてほしいです。 お願いします。 不定積分(三角関数) 次の不定積分を求めなさい。 1)sin4xcos5x 2)cos7xcos3x 途中計算がよくわからないのでお願いします。 不定積分の微分 ちょっと表現の仕方がわからなかったのですが、下の積分の解き方に苦労しています。さらに、その積分したものを微分しないといけないのですが... ∫e^x.(f(t-x))^3 dx (積分区間は0からt)です。 部分積分で解いてみようと試みたのですが、なにせ不定関数も混ざっているので、ちょっとやりづらいんです… どなたか上の積分の解き方を教えてはもらえないでしょうか。さらにその積分で出た解も微分したいのですが、それも踏まえてよろしくお願いします。 exp(sqrt(x^2+y^2)の定積分 ∫∫exp(sqrt(x^2+y^2)/(2*a^2))dxdy x:-a/2→a/2 y:-a/2→a/2 の定積分の解き方がわかりません. sqrt(x^2+y^2)=tと置換積分など行いましたが解けません. また不定積分なら,x=rcosΘ,y=rsinΘとおいて解けるのですが, 定積分だとΘの範囲をどうすればよいかわかりません. また積分範囲が円の仕様になっていませんので,Θの範囲を決めれません. よろしくお願いします. 指数関数と三角関数の積の積分 ∫sin(ax)exp{-b(x-c)^2}dx, 積分範囲[-∞, ∞] ∫cos(ax)exp{-b(x-c)^2}dx, 積分範囲[-∞, ∞] これらの定積分はどうやって計算すればいいのでしょうか? 数値計算ではなくて、不定積分を導いて計算する方法を知りたいです。 不定積分∫log(1+x)/x dxが分かりません 不定積分∫log(1+x)/x dxが分かりません。教科書(理工系の微分積分学:学術図書出版)を読み漁ったのですが、見つかりませんでした。部分積分と、置換積分を考えてみて計算したのですが、私のやり方では両方うまくいきませんでした。(参考書としては、マセマの微分積分学の本を持っています。) 置換積分:1+x=exp(t)と置換する。(与式)=∫texp(t)/exp(t)-1 dtとなりうまく計算できません。 それともこれは何かでうまくはさんで解くタイプの問題なのでしょうか?(ハサミウチの原理などを利用) 大本の問題は広義積分の問題で、積分区間は、-1→1となっています。 何か知っていることがありましたら、教えてください。よろしくお願いします。 exp(e^x)の微分,積分について exp(e^x)の微分,積分がわかりません;; exp(e^x)の微分はe^xexp(e^x)となるとは思うんですがこれは正しいでしょうか? exp(x^2)の積分はできませんよね?ではexp(e^x)の積分はできるんでしょうか?? 回答お願いします。 xのx乗の不定積分を教えてください。 xのx乗の不定積分を教えてください。
お礼
詳しい回答ありがとうございます。返答が遅くなってしまい申し訳ありませんでした。