• ベストアンサー
  • すぐに回答を!

内積と外積について

内積と外積について 2つのベクトルをA,Bと表し、2つのベクトルのなす角をθとします。 また、A=(ax,ay,az),B=(bx,by,bz)です。 内積はA・B=|A||B|cosθと表されこれはスカラー量です。 内積はAのBへの正射影とBの積(もしくは、BのAへの正射影とAの積)と認識しています。 また、A・B=axbx+ayby+azbzとも表されこれはスカラー量です。 A・B=|A||B|cosθ,A・B=axbx+ayby+azbzはどちらも内積の定義なのでしょうか? 外積は|A×B|=|A||B|sinθと表されますが、これもスカラー量ですよね。 外積はベクトル積と呼ばれることもあるようですが、 これは、外積の定義A×B=(aybz-azby,azbx-axbz,axby-ayax)がベクトルとなるからベクトル積と 言われるのでしょうか? |A×B|=|A||B|sinθは定義ではないのですか? 以上、よろしくお願い致します。

  • RY0U
  • お礼率40% (434/1065)

共感・応援の気持ちを伝えよう!

  • 回答数4
  • 閲覧数531
  • ありがとう数11

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3
  • alice_44
  • ベストアンサー率44% (2109/4758)

内積の定義は、 固有値がどれも正の値であるような 対称行列 G を係数として、 a・b = (aの転置) G b です。(右辺は行列積です) G の各成分の値は、a,b が属するベクトル空間の 基底のとりかたしだいで変わりますが、 上手い基底を選ぶと、G が単位行列になる ようにできます。その基底のもとで、 内積の成分表示は、三次元の場合、 a・b = ax・bx+ay・by+az・bz と書けます。こっちの式のほうが、 本来の定義に近いですね。 cosθ が入ったほうの式は、 内積ではなくて、「なす角」の定義ですよ。 コーシー・シュワルツの不等式によって、 内積÷ベクトルの大きさの積は -1 ~ 1 の値であることがわかるので、 それが =cosθ となるような実数 θ を 決めることができるのです。 そのような θ を、二つのベクトルの「なす角」 と呼びます。 外積の定義は、ベクトル値のほうが正解。 スカラーのほうは、外積ベクトルの大きさに 適当な符号をつけたもので、 外積そのものとは、違います。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご回答ありがとうございます。 理解できました。ありがとうございました。

関連するQ&A

  • ベクトル 外積について

    ベクトル 外積について 2つのベクトルをA,Bと表し、2つのベクトルのなす角をθとします。 また、A=(ax,ay,az),B=(bx,by,bz)です。 外積 A×B=(aybz-azby,azbx-axbz,axby-aybx)ですがこれは、 A×B=(aybz-byaz,azbx-bzax,axby-bxay)と書いても同じでしょうか? また、内積は2・3次元、外積は3次元のイメージなのですが、4次元等にも拡張して 考えられるものなのでしょうか? ご回答よろしくお願い致します。

  • 外積の成分の求め方

     外積a×bの成分を求めるときに、図を用いて考える場合についてなのですが。  点A,Bがありそれぞれの位置ベクトルをa=(ax,ay,az),b=(bx,by,bz)とし、点A,Bをxy平面に投影したときの点をA',B'とすれば、点A',B'への位置ベクトルはa'=(ax,ay,0),b'=(bx,by,0)となりますよね?a×bとz軸とのなす角をγ(ガンマ)とすれば、 |a×b|cosγ=2△OABcosγ=2△OA'B' となるそうなのですが、理解できません。教えてください。

  • ベクトルの外積の問題

    ベクトルAの向きをx軸の方向ベクトルA=(A,0,0)に、ベクトルBを(x,y)平面にとるとベクトルB=(Bx,By,0)=B(cosθ、sinθ、0)であるからベクトルC=ベクトルA×ベクトルB=AB(0,0,sinθ) このベクトルの大きさはABsinθ=A(Bsinθ)=(Asinθ)Bと表せるので、大きさAとベクトルAに垂直なベクトルBの成分との積、あるいは大きさBとベクトルBに垂直なベクトルAの成分との積である。 ベクトルAとベクトルBとで作る平行四辺形の面積で、向きがベクトルAとベクトルBとで作る平面な垂直なベクトルになる。 問題1 ベクトルA×ベクトルAを計算せよ。 問題2 ベクトルA=(Ax,Ay,0)=A(cosα,sinα,0)とベクトルB=(Bx,By,0)=B(cosβ,sinβ,0)の外積ベクトルC=ベクトルA×ベクトルBを作り、三角関数の加法定理を使い、大きさ|C|とその方向の意味を考えよ。  全く解けません。どなたか教えていただけますか?

その他の回答 (3)

  • 回答No.4

>外積は|A×B|=|A||B|sinθと表されますが、これもスカラー量ですよね。 前半は間違い。外積はA×Bであって、|A×B|は外積A×Bの大きさ。だからスカラーになるのは当たり前。外積はベクトルです。

共感・感謝の気持ちを伝えよう!

  • 回答No.2

内積自体はスカラーで、外積自体はベクトルですよ。 |A×B|は外積A×Bの大きさですよ。だから、|A×B|=|A||B|sinθは外積A×Bの大きさの定義であって、外積自体の定義ではありません。

共感・感謝の気持ちを伝えよう!

  • 回答No.1
noname#113983

イヤ、ダイガクデハ ナイセキヲA・B=axbx+ayby+azbzトテイギシテ、コウコウデハcosヲツカッテ テイギスルカラドッチヲテイギシテモカマワナイ。 ガイセキモオナジコト。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 内積と外積の物理的意味を教えてください

    内積と外積の物理的意味がわからないです。 内積は結果がスカラーになり、外積は方向と大きさをもつベクトルになるということはわかるのですが、「物理的意味」ということがよくわかりません。

  • 外積 商 次元

    前回、内積にはなぜ商が定義されないのか 質問させて頂きました。 URL:http://okwave.jp/qa/q7403145.html 外積の商が定義されないことを示そうとしています。 ベクトルa=(1,0,0)とベクトルxの外積を以下に示すと、 a×x=bから、 (1,0,0)×(0,1,0)=(0,0,1) (1,0,0)×(1,1,0)=(0,0,1) (1,0,0)×(2,1,0)=(0,0,1) とベクトルbとなるベクトルxが複数存在します。 よって、 (1,0,0)×(γ,1,0)=(0,0,1)が成り立つ。 γ成分は、a=(1,0,0)における並行成分が任意であるということ。 したがって、ベクトルaとベクトルbが既知でもベクトルxが一意に 定まらないため商が定義されない。 上記の内容でOKでしょうか? また、内積と外積が定義される次元についてですが、 スカラーの内積とスカラーの外積は存在しないと思うので最低でも 2次元以上のn次元で定義されると認識でOKでしょうか? 以上、ご回答よろしくお願い致します。

  • ベクトル 演算 商

    ベクトルの演算について質問させていただきます。 ベクトルには和と差、および積(内積と外積、スカラー倍)等の演算があると 思いますが、ベクトルに商(割り算)とういう演算はないのでしょうか? なぜベクトルの商がないのか気になったので質問させて頂きます。 なぜないのか教えて頂ければ幸いです。 ベクトルの内積における割り算を考えてみます。 a・x=bにおいて aベクトルへのxベクトルの正射影とその積は、 |a||x|cosθ=bとなります。 図で描けばわかるのですが、aとbが決まってもベクトルxが一意に決まらない ため、つまりベクトルaへの正射影であるベクトルxはいくらでも存在する。 からベクトルの商というのは考えないのでしょうか? 外積にもどうようのような理由があるからでしょうか? 以上、説明が下手くそですが気になりましたのでご回答よろしくお願い 致します。

  • ベクトルの回転について

    はじめまして。 以下のような問題について大学1年生の弟から質問されたのですが、 答えに自信がありません。どうか皆様のお力をお貸しください。 三次元空間上にベクトルA(ax,ay,az)、B(bx,by,bz)がある。 このAがBと平行になるような計算をしたい。 自分なりの考えは以下の通りです。 1.z座標を無視して、xy平面上のベクトルとして考え、成す角θzを求める θz=ArcCos{<A,B>/|A||B|} |A|=√ax^2+ay^2 |B|=√bx^2+by^2 <A,B>=ax×bx+ay×by 2.x座標を無視して、xy平面上のベクトルとして考え、成す角θxを求める θx=ArcCos{<A,B>/|A||B|} |A|=√ay^2+az^2 |B|=√by^2+bz^2 <A,B>=ay×by+az×bz 3.y座標を無視して、xy平面上のベクトルとして考え、成す角θyを求める θy=ArcCos{<A,B>/|A||B|} |A|=√ax^2+az^2 |B|=√bx^2+bz^2 <A,B>=ax×bx+az×bz 4.z軸回転させる。このとき、z軸回転させた座標をzAx、zAyとする。 zAx=ax Cosθz&#65293;ay Sinθz zAy=ax Sinθz + ay Cosθz 5.次にx軸回転させる。このとき、x軸回転させた座標をxAy、xAzとする。 xAy=zAy Cosθx&#65293;az Sinθx  xAz=zAy Sinθx + az Sinθx 6.次にy軸回転させる。このとき、y軸回転させた座標をyAx、yAzとする。  yAz=xAz Cosθy&#65293;zAx Sinθy yAx=xAz Sinθy + zAx Cosθy 7.求まったyAx、zAy、yAzを成分とする、ベクトルはBと平行である。(終了) うろ覚えですが、軸回転は順番によって全く違った回転をしてしまうというのを昔勉強したような気がするのですが、今回の場合は特にそういった問題は関係ないのでしょうか? また、それぞれの平面ごとになす角を求め、3つのなす角を使った回転を行ないましたが、 θ=ArcCos{<A,B>/|A||B|} |A|=√ax^2+ay^2+az^2 |B|=√bx^2+by^2+bz^2 <A,B>=ax×bx+ay×by+az×bz といった風に、一気に求めたθを用いて回転させる方法はありませんでしょうか? (AとBの外積で出てくる値が回転軸になるような・・・・?) 宜しくお願いします。

  • 外積に関する質問です。

    外積に関する質問です。 ベクトルaとベクトルbが接していない場合には外積って計算できるんでしょうか? 内積は正射影なのでベクトルaとbが接していなくても出来ると思うのですが、 外積はどうでしょうか?

  • 教えてください!

    物理の問題です 質点の位置ベクトルをr=(x,y,z)、質点に働く力をF=(Fx,Fy,Fz)とする。 (a)rの大きさr=|r|、スカラー積r・Fおよびベクトル積r*Fを求めよ。 (b)r=(2,1,0)、F=(0,F、0)のとき。r・Fおよびr*Fを求めよ。 またこれらの量は物理的には何を表すかを述べよ。 僕の答えは (a)r=|r|=√(x^2+y^2+z^2) スカラー積 r・F=|r|・|F|cosθ ベクトル積 r*F=|r|*|F|sinθ (b)r=|r|=√5、F=|F|=√F^2=F r・F=√5cosθ r*F=√5sinθ スカラー積はベクトルの内積、ベクトル積=ベクトルの外積 です。 これらがあっているか教えてくださいm(_ _)m 間違ってたらどうやればいいのか教えてくださると嬉しいです。 よろしくお願いします。

  • 線形代数 内積について

    線形代数 内積について ベクトルaとベクトルbの内積をa・bと表します。 2つのベクトルの内積はa・b=|a||b|cosθで表されます。 内積とはベクトルbのベクトルaへの正射影と説明されていたのですが 定理より、a・b=b・aが成り立つことから、ベクトルaのベクトルbへの 正射影と考えても良いですか? また、a・b=|a||b|cosθにおける||記号は絶対値記号として捉えて 良いでしょうか? ご回答よろしくお願い致します。

  • ベクトル積の問題です

    ベクトル積の問題です、『ベクトルA、Bについて以下の問題を示せ (1) A×B=-B×A (2)A×A=0 (3)A×(αB+βC)=αA×B+βA×C (α、βは定数)』 この問題の前に導入問題があり、ベクトルCの導出が出来ません。この問題が出来れば上記の問題が解けると思うのですが・・・『ベクトルA、BについてA = (ax, ay, az), B = (bx, by, bz)と成分表示したとき、 |C|=|A||B|sinθ、C×A=0、 C×B=0 とする。 ベクトルCの成分を求めよ』     よろしくお願いします

  • ベクトルの外積

    ベクトルの内積の定義は,二つのベクトルの大きさとそのなす角の余弦の積として定義されます.この定義は,例えば,仕事を定義する場合,あるいは,ガウスの定理のような曲面とその法線に対するベクトルの積の例などを使って,容易にその定義の妥当性が検証できます. 一方,ベクトルの外積の場合は,二つのベクトルの大きさとそのなす角の正弦の積として,しかも,その方向は二つのベクトルに対して直角と定義されます.この定義は,電磁気学には,フレーミングの法則などがありますが,力学でこの法則の妥当性を検証するような事実は,何があるのでしょうか.

  • 外積はなぜ2階のテンソルなのですか?

    昨日も質問させていただきましたが,もう一度質問させてください. 以下,クロネッカーのデルタとエディントンのイプシロン及びニュートンの総和規約を使っています. 内積はu・v=(δij)(ui)(vj)と表され,u,vの2つと縮約をとってやっとスカラー(0階テンソル)になるので内積を表すテンソルは2階テンソルだと思います. 外積はu×v=(εijk)(uj)(vk)と表され,u,vの2つと縮約をとってもまだベクトル(1階テンソル)です.外積操作が2階のテンソルならこの時点でスカラーになるはずですが,実際はベクトルになります.これは1階高い3階のテンソルだからなのではないのですか? そして,ここでwとの内積をとるスカラー三重積(u×v)・w=(εijk)(uj)(vk)(wi)はスカラーであり,スカラー三重積を表すテンソルは3階のテンソルで間違いないですか? 以上ですが,できれば上の文章のどこが間違っているのかを指摘してくださればありがたいです.