• ベストアンサー

ベクトル 外積について

ベクトル 外積について 2つのベクトルをA,Bと表し、2つのベクトルのなす角をθとします。 また、A=(ax,ay,az),B=(bx,by,bz)です。 外積 A×B=(aybz-azby,azbx-axbz,axby-aybx)ですがこれは、 A×B=(aybz-byaz,azbx-bzax,axby-bxay)と書いても同じでしょうか? また、内積は2・3次元、外積は3次元のイメージなのですが、4次元等にも拡張して 考えられるものなのでしょうか? ご回答よろしくお願い致します。

質問者が選んだベストアンサー

  • ベストアンサー
  • kabaokaba
  • ベストアンサー率51% (724/1416)
回答No.1

>と書いても同じでしょうか? 乗法が可換なものであるなら同じ >拡張して考えられるものなのでしょうか? 内積は何次元でもいい.無限次元でだって定義できる. 外積は有限次元なら辛うじて定義できるが n次元の外積はn-1個のベクトルに対して,一個のベクトルを定めるものになる. けど,定義そのものは行列式と双対空間を使うから それほど簡単ではない. #実際はR^nのように標準的な基底が存在しないと定義できなかったはず

RY0U
質問者

お礼

ご回答ありがとうございます。 n次元にも拡張できるのですね。ありがとうございました。

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (1)

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.2

n 次元ベクトル 2 個から n(n+1)/2 次元ベクトルへの 交代双線型写像としてなら、容易に拡張できる。

RY0U
質問者

お礼

ご回答ありがとうございます。 n次元にも拡張できるのですね。ありがとうございました。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 内積と外積について

    内積と外積について 2つのベクトルをA,Bと表し、2つのベクトルのなす角をθとします。 また、A=(ax,ay,az),B=(bx,by,bz)です。 内積はA・B=|A||B|cosθと表されこれはスカラー量です。 内積はAのBへの正射影とBの積(もしくは、BのAへの正射影とAの積)と認識しています。 また、A・B=axbx+ayby+azbzとも表されこれはスカラー量です。 A・B=|A||B|cosθ,A・B=axbx+ayby+azbzはどちらも内積の定義なのでしょうか? 外積は|A×B|=|A||B|sinθと表されますが、これもスカラー量ですよね。 外積はベクトル積と呼ばれることもあるようですが、 これは、外積の定義A×B=(aybz-azby,azbx-axbz,axby-ayax)がベクトルとなるからベクトル積と 言われるのでしょうか? |A×B|=|A||B|sinθは定義ではないのですか? 以上、よろしくお願い致します。

  • 外積の成分の求め方

     外積a×bの成分を求めるときに、図を用いて考える場合についてなのですが。  点A,Bがありそれぞれの位置ベクトルをa=(ax,ay,az),b=(bx,by,bz)とし、点A,Bをxy平面に投影したときの点をA',B'とすれば、点A',B'への位置ベクトルはa'=(ax,ay,0),b'=(bx,by,0)となりますよね?a×bとz軸とのなす角をγ(ガンマ)とすれば、 |a×b|cosγ=2△OABcosγ=2△OA'B' となるそうなのですが、理解できません。教えてください。

  • ベクトルの回転について

    はじめまして。 以下のような問題について大学1年生の弟から質問されたのですが、 答えに自信がありません。どうか皆様のお力をお貸しください。 三次元空間上にベクトルA(ax,ay,az)、B(bx,by,bz)がある。 このAがBと平行になるような計算をしたい。 自分なりの考えは以下の通りです。 1.z座標を無視して、xy平面上のベクトルとして考え、成す角θzを求める θz=ArcCos{<A,B>/|A||B|} |A|=√ax^2+ay^2 |B|=√bx^2+by^2 <A,B>=ax×bx+ay×by 2.x座標を無視して、xy平面上のベクトルとして考え、成す角θxを求める θx=ArcCos{<A,B>/|A||B|} |A|=√ay^2+az^2 |B|=√by^2+bz^2 <A,B>=ay×by+az×bz 3.y座標を無視して、xy平面上のベクトルとして考え、成す角θyを求める θy=ArcCos{<A,B>/|A||B|} |A|=√ax^2+az^2 |B|=√bx^2+bz^2 <A,B>=ax×bx+az×bz 4.z軸回転させる。このとき、z軸回転させた座標をzAx、zAyとする。 zAx=ax Cosθz-ay Sinθz zAy=ax Sinθz + ay Cosθz 5.次にx軸回転させる。このとき、x軸回転させた座標をxAy、xAzとする。 xAy=zAy Cosθx-az Sinθx  xAz=zAy Sinθx + az Sinθx 6.次にy軸回転させる。このとき、y軸回転させた座標をyAx、yAzとする。  yAz=xAz Cosθy-zAx Sinθy yAx=xAz Sinθy + zAx Cosθy 7.求まったyAx、zAy、yAzを成分とする、ベクトルはBと平行である。(終了) うろ覚えですが、軸回転は順番によって全く違った回転をしてしまうというのを昔勉強したような気がするのですが、今回の場合は特にそういった問題は関係ないのでしょうか? また、それぞれの平面ごとになす角を求め、3つのなす角を使った回転を行ないましたが、 θ=ArcCos{<A,B>/|A||B|} |A|=√ax^2+ay^2+az^2 |B|=√bx^2+by^2+bz^2 <A,B>=ax×bx+ay×by+az×bz といった風に、一気に求めたθを用いて回転させる方法はありませんでしょうか? (AとBの外積で出てくる値が回転軸になるような・・・・?) 宜しくお願いします。

  • ベクトルの解析について

    ベクトルA、Bに対して div(A×B)=BrotA-ArotBを示せという問題で、 div(A×B)=det[(∂/∂x, ∂/∂y, ∂/∂z), (Ax, Ay, Az), (Bx, By, Bz)] BrotA=det[(Bx, By, Bz), (∂/∂x, ∂/∂y, ∂/∂z), (Ax, Ay, Az)] ArotB=det[(Ax, Ay, Az), (∂/∂x, ∂/∂y, ∂/∂z), (Bx, By, Bz)] というところまでは分かったのですが、サラスで展開してもイコールになりません。どうすればイコールになるんですか? どなたか教えていただけないでしょうか?

  • 空間上の2直線のなす角について

    数学は高校2年生で止まっていますので、難しい内容だとすぐには理解できないかもしれませんが、がんばって理解しようと思っています。 今回質問させて頂きたいのは「空間上の2直線のなす角」についてです。 1つ目の直線は、基準となる直線でZ軸と平行(という考え方が正しいかすら分かってません) 2つ目の直線は、傾きを持った平面の法線ベクトルになる予定です。 その2つの直線のなす角を求めたいと思っています。 1つ目の基準となる直線はA(1,1,0)、B(2,1,0)、C(1,2,0)の3点を通る面の法線ベクトルを求めればZ軸と平行な直線が求まるのではないかと思いました。 しかしながら、AB→とAC→の外積を求めようとすると(0,0,0)という解になってしまいました。 1つ目の直線と2つ目の直線のなす角を求めるには cos φ = A・B / (|A| * |B|)    Ax * Bx + Ay * By + Az * Bz = ─────────────────────────── √((Ax*Ax + Ay*Ay + Az*Az) * (Bx*Bx + By*By + Bz*Bz)) を使って求めるところまでは調べたのですが、1つ目の直線が求められないためになす角を求めるところまでたどり着けません。 数学に不慣れな者の質問で所々不明な箇所があると思いますが、回答いただけるとありがたいです。 宜しくお願い致します。

  • n次元ベクトルの外積の定義

    n次元ベクトルの外積の定義はどういうものなのでしょうか? そもそもできるのでしょうか?外積は3次元特有のものでしょうか? 例えば、n次元ベクトルの内積は、例えば (a1,a2,.....,an)・(b1,b2,.......,bn) =a1*b1+a2*b2+......+an*bn と定義できると思っています。 こういう感じでn次元ベクトルの外積は定義できますか? ご教授ください。

  • ベクトルの外積の問題

    ベクトルAの向きをx軸の方向ベクトルA=(A,0,0)に、ベクトルBを(x,y)平面にとるとベクトルB=(Bx,By,0)=B(cosθ、sinθ、0)であるからベクトルC=ベクトルA×ベクトルB=AB(0,0,sinθ) このベクトルの大きさはABsinθ=A(Bsinθ)=(Asinθ)Bと表せるので、大きさAとベクトルAに垂直なベクトルBの成分との積、あるいは大きさBとベクトルBに垂直なベクトルAの成分との積である。 ベクトルAとベクトルBとで作る平行四辺形の面積で、向きがベクトルAとベクトルBとで作る平面な垂直なベクトルになる。 問題1 ベクトルA×ベクトルAを計算せよ。 問題2 ベクトルA=(Ax,Ay,0)=A(cosα,sinα,0)とベクトルB=(Bx,By,0)=B(cosβ,sinβ,0)の外積ベクトルC=ベクトルA×ベクトルBを作り、三角関数の加法定理を使い、大きさ|C|とその方向の意味を考えよ。  全く解けません。どなたか教えていただけますか?

  • ベクトル

    違いが分からなくて困っています。ベクトルA=ax+(-7)ay+5az、ベクトルB=(-4)ax+(-2)ay+2azがあったとしてAのB方向成分の大きさとAのB方向のベクトルはどのように違い、どうやって計算すればよいのでしょうか?

  • 4次元のベクトルpとqに対して、|p|*|q|*sinθはどのようにかける?

    2次元のベクトルp=(a,b)とベクトルq=(x,y)に対して、 なす角をθとすると、 |p|*|q|*cosθ=ax+by, |p|*|q|*sinθ=±(ay-bx) となります。 4次元のベクトルp=(a,b,c,d)とベクトルq=(x,y,z,w)に対しては、そのなす角θというものが、 |p|*|q|*cosθ=ax+by+cz+dw で定義されますが、このとき、 |p|*|q|*sinθ は成分を用いてどのようにかけるのでしょうか?

  • 外積 商 次元

    前回、内積にはなぜ商が定義されないのか 質問させて頂きました。 URL:http://okwave.jp/qa/q7403145.html 外積の商が定義されないことを示そうとしています。 ベクトルa=(1,0,0)とベクトルxの外積を以下に示すと、 a×x=bから、 (1,0,0)×(0,1,0)=(0,0,1) (1,0,0)×(1,1,0)=(0,0,1) (1,0,0)×(2,1,0)=(0,0,1) とベクトルbとなるベクトルxが複数存在します。 よって、 (1,0,0)×(γ,1,0)=(0,0,1)が成り立つ。 γ成分は、a=(1,0,0)における並行成分が任意であるということ。 したがって、ベクトルaとベクトルbが既知でもベクトルxが一意に 定まらないため商が定義されない。 上記の内容でOKでしょうか? また、内積と外積が定義される次元についてですが、 スカラーの内積とスカラーの外積は存在しないと思うので最低でも 2次元以上のn次元で定義されると認識でOKでしょうか? 以上、ご回答よろしくお願い致します。

このQ&Aのポイント
  • 58歳男性が運転業務中に吐き気とめまいが再発し、在宅療養をすることになりました。
  • 入院は9日間で済んだが、再発の可能性があり、定年延長の予定を考え直す決断をしました。
  • 技術的なスキルはないが、ブラインドタッチができるため、自宅での在宅ワークを考えています。月に3万ほどの収入があれば十分と考えています。
回答を見る