• ベストアンサー
  • 困ってます

ベクトル

aベクトル=(1,2,3) bベクトル=(-1,1,1) とする。 tを動かすとき、xベクトル=aベクトル+tbベクトルの 大きさ│xベクトル│の最小値を求めよ。 また、そのとき、xベクトルとaベクトルのなす角をθとするとき、 cosθの値を求めよ。 考えたのですがわかりません。 解説おねがいします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • gohtraw
  • ベストアンサー率54% (1630/2966)

 xベクトルは(1-t、2+t、3+t)と表わされ、|xベクトル|は√(f(t))という形になるので、f(t)の最小値を求めればいいことになります。  上記でtの値が決まり、すなわちxベクトルが判るのでxベクトルとaベクトルの内積をとり、これを|aベクトル|*|xベクトル|で割ればcosθが求められます。

共感・感謝の気持ちを伝えよう!

その他の回答 (2)

  • 回答No.3

|x|~2 を t の関数として考えるのも良いのですが… x の軌跡は直線ですから、 原点に一番近い点は、原点から降ろした垂線の足です。 垂線の足は、↑x・↑b = 0 を解けば 求まりますね。 θは、↑x・↑a の値から、余弦定理で。

共感・感謝の気持ちを伝えよう!

  • 回答No.2
  • info22_
  • ベストアンサー率67% (2650/3922)

L=|x↑|=|(1,2,3)+t(-1,1,1)| L^2=(1-t)^2+(2+t)^2+(3+t)^2=3t^2+8t+14 =3(t+(4/3))^2 + 26/3≧26/3 t=-4/3の時 Lの最小値=√(26/3) このとき x↑=(1,2,3)-(4/3)(-1,1,1)=(7/3,2/3,5/3) 内積(a↑・x↑)=(1/3)(1*7+2*2+3*5)=(1/3)(7+4+15)=26/3 |a↑|=√(1+2^2+3^2)=√14 |x↑|(min)=L(min)=√(26/3) cosθ=(a↑・x↑)/(|a↑|*L(min)) =(26/3)/{(√14)√(26/3)}=√(13/21)

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • ベクトル至急!

    a→、b→は0→でない定ベクトルとしa→とb→は平行でないとする。tを実数値をとる変数として、|a→+tb→|を最小にするtの値をt0とするとき (1) t0を|a→|,|b→|,a→・b→を用いて表せ。 解答には|a→+tb→|≧0であるから、f(t)が最小のとき|a→+tb→|も最小になる。よってt0はf(t)が最小のときのtの値で to=-(a→・b→)/|b→|^2」 とあるんですが なんで|a→+tb→|≧0ってわかるんですか?

  • ベクトルの問題です

    2つのベクトル、ベクトルa=(x,2)、ベクトルb=(x-3,x-6)のなす角が鈍角となるような実数xの値の範囲を求めよ。 という問題で、解説を見たのですが、xの範囲が-3<x<4となるまでは分かります。しかしその後に、 「ただし、cosθ≠-1より、x≠4-√10、よって、-3<x<4-√10,4-√10<x<4」 とありました。cosθ≠-1なのは分かりますが、そこからどうやってx≠4-√10が出たのかが分かりません。そのx≠4-√10の求め方をよかったら教えて下さい。分かりにくくてすいません。

  • 数学Bベクトルの問題!

    数学Bベクトルの問題! ・aベクトル=(-√3.1)と120゜の角をなし、大きさが2√10 であるベクトルxベクトル を求めよ。 ・aベクトル=(1.2)、bベクトル=(3.-2)とする。aベクトルとaベクトル+tbベクトルが垂直であるように、実数tの値を求めよ。 ・|aベクトル|=|bベクトル|=2、a・b=-3とする。aベクトル+bベクトルとaベクトル+tbベクトルが垂直であるように、実数tの値を求めよ。 ・|aベクトル|=4、|bベクトル|=5でaベクトルとbベクトルのなす角が60゜であるとき、ベクトル2a ベクトル-3bベクトルの大きさを求めよ。 です。お願いします☆

  • ベクトルの問題で分らないのがあるので教えてください

    ※a→は「aベクトル」という意味です。 (1)ベクトルa→、b→において、|a→|=2、|b→|=3、|2a→-b→|=4とするとき |a→+tb→|の最小値と、そのときの実数tの値を求めてください。(途中式もお願いします。) ちなみに答えは、 (1)t=-1/4のとき最小値√55/4 です。

  • 成分つかうの…?ベクトルのまま解くの?

    ベクトルa=(2,1) ベクトルb=(-4,3)がある。 tを変化させるとき、ベクトルc=a+ tbの大きさの最小値を。 こういう問題のとき…。 「大きさ」の最小値…だからcの絶対値をとって…。 絶対値がついてたら反射的に2乗! そこでla+tbl^2=lal^2 +2t(a・b)+lbl^2 ん・・・内積a・bの値はどうすれば…? ベクトルa,bのなす角をθとして…とかやらないといけないのか… と考えてて答えを見ると… c=a+ tb=(2,1)+t(-4,3)=(2-4t,1+3t) …あ、成分で計算するのか…。 そもそも違った。 …という感じで、ベクトルをどうやって扱えばいいかゴチャゴチャになって理解できてません。たまたま上手くいく場合と、上手くいかない場合と…なんか解けてるって感覚がなくて、操作してたら答えが出た。っていう感覚です、しかし何となくでも解けてしまうことが多く、何が理解できていないのかもよく分からないのです。 上の始めの間違えた解法から、何がいけなかったのか… ご指摘いただければ幸いです。

  • 数Bのベクトルの問題です。解説お願いします。

    (1)aベクトル=(-3、0、-3√3)とx軸、y軸、z軸の正の向きとのなす角をそれぞれ求めよ。 (2)aベクトル=(-1,0、-1)、bベクトル=(-1,2,2)、cベクトル=aベクトル+tbベクトルについて、cベクトルとaベクトルのなす角とcベクトルとbベクトルのなす角が等しくなるようなtの値を求めよ。 お願いします。

  • ベクトルの問題

    問い aベクトル=2,1 bベクトル=3,4 に対してcベクトル=aベクトル+tbベクトル tは実数とする 1.絶対値cベクトル=√10を満たすtを求めよ 2.絶対値cベクトルの最小値とそのときのtの値を求めよ がわかりません教えてください

  • 空間ベクトル

    e1ベクトル、e2ベクトル、e3ベクトルをそれぞれx軸、y軸、z軸に関する 基本ベクトルとし、ベクトルaベクトル=(-1、√2、1)と e1ベクトル、e2ベクトル、e3ベクトルのなす角をそれぞれ α、β、γとする。 (1)cosα,cosβ、cosγの値を求めよ。 (2) α、β、γ を求めよ。  この問題が解けません。  解説付でといてくれる方  お願いします。

  • 空間のベクトル

    2つのベクトル↑a=(1,x,0),↑b=(x+1,0,x-1)のなす角が45°のとなるようなxの値。 x+1=√x+1 × √(x+1)^2+(x-1)^2 × cosθ の式が立つと思うのですがこれの計算の仕方がわかりません…教えていただけませんか

  • ベクトルの大きさの最小

    a→、b→は0→でない定ベクトルとし、a→とb→は平行でないものとする。tを実数値をとる変数として、|a→+tb→|を最小にするtの値を toとするとき (1)toを|a→|、|b→|、a→・b→を用いて表せ。 答えではまず f(t)=|a→+tb→|^2とおき、これを展開して 2次関数の式の基本形a(t-p)^2+qの形にして表しています。 ちなみにその基本形というものが f(t)=|b→|^2{t+(a→・b→)/|b→|^2}^2 +|a→|^2 -(a→・b→)^2/|b→|^2  です。 これから、解答では 「|a→+tb→|≧0であるから、f(t)が最小のとき|a→+tb→|も最小になる。よって、toはf(t)が最小となるときのtの値で to=-(a→・b→)/|b→|2 」 とあるんですが・・・ 最後の答えに至るまでの解き方は分かるんです。 ですが「-(a→・b→)^2/|b→|^2 」→「-(a→・b→)/|b→|2」にどうしてなるのかがわかりません。 分子の(a→・b→)^2の2乗は外れて(a→・b→)となるのに、 なぜ分母の|b→|^2はそのままなんでしょうか? 分からないのはこの問題というよりは、計算の問題ですね・・・ 誰か分かりやすく教えてください。お願いします><