• ベストアンサー

半群の証明

こんばんは。 次は半群となるかどうか? S=R、 a○b=min{a、b} (a、bの内の最小の方) 上記のような問いがあり、半群になるという結果になったのですが合っていますか? ご回答お願いいたします。

noname#146701
noname#146701

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_38
  • ベストアンサー率43% (75/172)
回答No.1

最小値の最小値は、皆、最小値だ。 世界に広げよう、最小値の… (二度やるほどの芸でもなかった。) http://oshiete1.goo.ne.jp/qa5600242.html

noname#146701
質問者

お礼

ご回答ありがとうございました!参考にさせていただきます^^

関連するQ&A

  • 半群の証明

    こんばんは。来週にテストがあるため勉強をしているのですが、問題集に「次は半群となるかどうか調べよ」という以下のような3つの問いがありまして、解いてみたのですが正しいでしょうか?結合法則を満たすかどうか調べました。問1も問2,3と同じような解答ができましたら、そちらもお答えいただけると幸いです。 ご回答お願いいたします。 問1)S=負の数全体の集合、 a○b=ab (通常の積) 解答)a○bはSには属さないため、○はS上の二項演算ではない。    よって半群にはならない。 問2)S=N、 a○b=GCD(a、b) (a、bの最大公約数) 解答)GCD(GCD(a,b),c)=GCD(a,GCD(b,c))    GCD(GCD(a,b),c)   =GCD(GCD(b,c),a)   =GCD(a,GCD(b,c))    (a○b)○c=a○(b○c)    よって半群となる。 問3)S=R, a○b=min{a,b} (a、bのうちの小さい方) 解答)min{min{a,b},c}=min{a,min{c,b}}       min{min{a,b},c}   =min{min{b,c},a}   =min{a,min{c,b}    (a○b)○c=a○(b○c)    よって半群となる。

  • 半群になるかどうかの証明

    こんばんは。 研究で次のような問題で戸惑っています。次のものが半群となるかどうか調べたいのですが、なかなか証明できません・・。アドバイス等をいただきたく質問させていただきました。ご回答お願いいたします。 S=N、 a○b=G⊂D(a、b) (a、bの最大公約数) S:空でない集合 N:自然数全体の集合 ※「○」はマルのことです。

  • モノイド・半群は演算が閉じている?

    モノイド・半群に付いてお尋ねします。 Wikipediaでは http://ja.wikipedia.org/wiki/%E3%83%A2%E3%83%8E%E3%82%A4%E3%83%89 下記2条件のみが書かれてあります。 結合律 S の任意の元 a, b, c に対して、(a • b) • c = a • (b • c) 単位元の存在 S の元 e が存在して、S の任意の元 a に対して e • a = a • e = a 一方でモノイドは単位元をもつ半群と書かれてあります。 半群は下記の通りです。 http://ja.wikipedia.org/wiki/%E5%8D%8A%E7%BE%A4 演算が閉じている S の各元 a, b に対して、演算結果 a • b は再び S に属する。 結合律 S の各元 a, b, c に対して、等式 (a • b) • c = a • (b • c) が満たされる。 これを見るとモノイドも演算が閉じている必要があると読み取れるのですがどうでしょうか。 モノイドの方の記述が抜けているだけかと思ったのですが履歴を見るとわざわざ除外されています。 他のサイトを見てもモノイドは「演算が閉じている」と書かれているサイトを多数見かけます。 研究者によって解釈が分かれているのでしょうか。

  • 半群・・・

    [問] Sは集合AからAへの全単射全体の集合とし、演算は通常の写像の積とする。 これは、群にらるか?また可換群になるか? ________________________________________ 群となるための3つの条件や、可換群の定義も理解してるのですが、 (分かったつもりかもしれませんが……) 集合AからAへの全単射・・・・・・→ 恒等写像? 演算は通常の写像の積とする。・・・→ ??? 結局分かりませんでした。 入門レベルで申し訳ないですが、よろしくお願いします。

  • 加法群は半直積の正規部分群であることについて

    GをGL(n,R)の部分群とし、G×R^n上に (A,a)・(B,b):=(AB,a+Ab) という演算・を定め、これをGとR^nの半直積とし、G∝R^nと書くことにします。 このとき、加法群(R^n,+)はG∝R^nの正規部分群であるといえるのでしょうか? よろしくおねがいします。

  • 群数列についての証明

    第k群までの項をすべて順に並べた数列を、 c1,c2,c3.......,cn  とする。 この群数列は次の条件を満たしている。  項はすべて自然数  nは第k群までの項の総数  第k群を有限数列と考えたとき、初項はak,末項はbk (特にbk=cn)  第1群の項は自然数aである。(a1=b1=a)  第1群から第k群までに現れない自然数の中で最小のものが第(k+1)群の    初項a k+1  第(k+1)群の第2項以降は    c1+a k+1, c2+a k+1, ....... ,cn+a k+1 (1) a k+1≦bk +1 を証明せよ(k=1,2,3,......) (2) 2ak≦a k+1   を証明せよ(k=1,2,3,......)

  • 群になることの証明なんですが・・・

    集合G={(a,b)|a,b∈R,a≠0}に結合*を   (a,b)*(a′,b′)=(aa′,a′b+b′)で定め、 Gはこの結合で群になることを示し単位元、(a,b)の逆元を求める問題なんですが、まず群の公理(結合法則、単位元の存在、逆元の存在)を満たすことで証明しようとしたのですが結合法則の証明でつまづいてしまいました!結合法則はx(yz)=(xy)zをこの問題の演算であてはめようとしたのですが計算がよくわかりませんでした。計算手順についてアドバイス頂けないでしょうか?・・・

  • 群環の一般的な定義とは?

    (R,+,・)を可換環(単位的環とは限らない),(G,*)を半群(一般的に群ではなく半群とする)とすると,GにはR左加群が定義できる。 次に,時,A≠φを集合とし単射f:G→Aに於いて, ☆:f(A)×f(A)→f(A)をf(x)☆f(y):=f(x*y)と定義し, ∀r,s,t∈R,∀f(x),f(y),f(z)∈f(G)に対して, (s・f(x))☆f(y)=s・(f(x)☆f(y))=f(x)☆(s・f(y))と定義する。 この時,(A,☆)はR上の多元環になる。 この時の(A,☆)をGのR上の群環と呼び,R[G]と書く。 と解釈したのですが某書に「R[G]は厳密にはGからRへの写像全体として定義される」 と載っていたのですがこれはどういう事でしょうか? R[G]の定義はR[G]:={f;Aは集合,f:G→Aは単射,多元環を満たす写像☆が存在する}とも解釈してみたのですが。。。

  • リー代数 単純ルート

    リー代数の単純ルートに関してわからないことがあります。 (h*_R):双対実カルタン部分代数 Δ:ルート系 {v_1,…,v_n}:(h*_R)の基底 (h*_R)の一つの元αは、α=Σ^n_(i=1)(a_i)(v_i)(a_i:実数)と書くことができ、別の元βはb_iを用いて表現できる。ここでαとβの大小関係を以下で定める。 α>β⇔ a_1=b_1,…, a_(s-1)=b_(s-1), a_s>b_s(1≦s≦n) この大小関係で、α>0となるα全体の集合を(h*_R)+と書き、さらに、Δ⋂ (h*_R)+=Δ+とおく。 αをΔ+の中で上記の大小関係で最小のもの、すなわち、α_1=min(Δ+)とする。 また、Δ+からα_1の実数倍となる集合<α_1>を除いたものを、(Δ+)-<α_1>と書き、α_2=min((Δ+)-<α_1>)とおく。 次に、α_1, α_2の線形結合で表わされる2次元実部分空間を<α_1, α_2>と書き、Δ+からその空間を除いたものを、(Δ+)-<α_1, α_2>と書いて、α_3=min((Δ+)-<α_1, α_2>)とする。 これを続けるとn個の元の集合Π={α_1,…,α_n}が得られる。このように作ったΠの任意の元α_iに対して次が成り立つ。 (1)α_i∈Δ+ (2)α_i=β+γ(β,γ∈Δ+)と表わすことができない。 この2つをみたすルートを単純ルートという。 と本にあったのですが、α_iに対して、(2)がなぜ成り立つのかがわかりません。 大変恐縮ですが、証明を教えていただきたいです。 よろしくお願いします。

  • 部分群であることの証明

    部分群であることの証明 Gを群、Hをその部分集合とし、a,b∈Gに対し、「a~b⇔ab^(-1)∈H」なる~ が同値関係であるとする。このとき、HはGの部分群であることを証明してほしいです。 部分群であることを証明するには、(1)結合法則が成り立つこと(2)単位元の存在(3)逆元の存在が言えればいいこと、 同値関係の定義については理解しています。 ですが証明文を書くことができず、困っています。 回答よろしくお願いします。