• 締切済み

確率積分・伊藤の公式について

●W(s)はブラウン運動  ●f(s)は W(u) (u≦s) の関数 ●0=t0<t1<t2<……<tn-1<tn=t ●ti - ti-1 = t/n のとき、「確率積分」を以下のように定義する。 ∫[0~t]f(s)dW(s) = lim[n→∞]Σ[i=1~n] f(t{i-1}) * (W{ti}-W{ti-1})) ※{}内は添字 また、「伊藤の公式」より Σ[i=1~n] (W{ti}-W{ti-1})^2 → t (n→∞) となる。この証明は W{ti}-W{ti-1} が N(0,ti - ti-1) に従っていること および大数の法則より証明できました。 そして、質問したい問題は上述の「確率積分」の定義と「伊藤の公式」を前提として、 以下の式を示せというものです。 ∫[0~t]W(s)^2dW(s) = 1/3*W(t)^3 - ∫[0~t]W(s)ds 左辺を確率積分の定義に従って、なんとか計算していくと、 (左辺)=1/3*W(t)^3 - lim[n→∞]Σ[i=1~n]W{ti-1}*(W{ti}-W{ti-1})^2 となりました。 よって、あとは ∫[0~t]W(s)ds = lim[n→∞]Σ[i=1~n]W{ti-1}*(W{ti}-W{ti-1})^2      (★) が示されればこの問題は解けたことになります。 ここで疑問なのですが、 (1)∫[0~t]W(s)ds という、確率過程の積分はどこで定義されたのでしょうか? 最後がdWsの確率積分は事前に定義してありますけど…。 (2)(★)はどうやって示せば良いのでしょうか? まだ、確率積分のイメージが掴めてない状態です。 直接の質問の答えではなくても良いので、ヒントをお願いします。

みんなの回答

  • stomachman
  • ベストアンサー率57% (1014/1775)
回答No.1

 実は伊藤積分ってよく分かってないんですけど、ご質問の部分だけについて言えば、確率過程の話だと思えばいいかなと。  すると、確率過程Wの積分 J (a,b)= ∫W(s)ds (積分はa~bの定積分) は、普通は(形式的に)「区分求積法」を使って J (a,b)= lim Σ(s[j]-s[j-1])W(s[j]) (limは区間(a,b)の分割数n→∞、Σはj=1~n) と定義されるでしょう。確率過程J(0,t)の期待値と自己相関関数は、Wの期待値と自己相関関数が分かっていれば計算できる。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 連続型確率変数について

    確率変数が連続型の場合の確率は積分で表されるかと思いますが、なぜ積分になるのかという点でご教授頂きたくご質問させて頂きました。 例えば、今回マッチングアプリで知り合った人の身長が168cmである確率と考えた時、 ちょうど身長が168.00000…cmの人が来るとは考えにくいから168cm近辺[例えば167.5~168.5]の人が来るというように表現を変える必要がある、つまり連続型確率変数を考える時は範囲の中で考えることになるというのは理解できます。 なので、改めてマッチングアプリで知り合った人の身長がa cm≦x≦b cmである確率Pで考えた時、 a cm=t0≦t1≦…≦tn-1≦tn=b cmと分割して、 より小さい範囲[ti-1, ti]cmの人が来る確率をpiとおけば求める確率PはΣ[i=0→n]piと書けますが、この後どう考えればよいのか、 積分なのでtλ∈[ti-1, ti]に対してpi=f(tλ)(ti-ti-1)とおけばlimΣ[i=0→n]f(tλ)(ti-ti-1)=∫f(t)dtとなるかと思いますが、 なぜf(tλ)と身長の範囲(ti-ti-1)を掛けてpi=f(tλ)(ti-ti-1)と書けるかがうまく説明できません。 (f(tλ)がなんなのか?) 積分的に見ればf(tλ)(ti-ti-1)はf(tλ)を高さ、(ti-ti-1)を横幅と見た矩形面積ですが、今回の確率で考えた時の意味が分からずご教授頂けたらと思っています。

  • 伊藤積分について

    伊藤確率積分の定義のところで質問です。 まずは、伊藤積分を考えるきっかけは、普通のリーマン積分ができない。という事ですが、教科書を読んでいくと、伊藤積確率積分をリーマン和で近似して自乗平均極限値をとって伊藤積分を定義しています。 つまり、わからない所は、伊藤積分をリーマン和で近似してもよいのか?という事です。 お願いします。

  • 確率積分

    次の条件と式がありますが、どうして、この式が成り立っていくのかわかりません。 M(t)=N(t)-Integral[ λ(s)ds,{s,0,t}] (マルチンゲール) E[ ( Integral[ v(u)dM(u), {s,t} ])^2 | F(s) ] (1) =E[ Integral[ v(u)^2 * d[M](u), {s,t} ] | F(s) ] (2) =E[ Integral[ v(u)^2 * d<M>(u), {s,t} ] | F(s) ]  (3) E[ Integral[ v(u)^2 * λ(u)du, {s,t} ] | F(s) ]   (4) なぜ、(2)から(3)に行く時、なぜ、d[M](u)=d<M>(u) といえるのでしょうか?この定理、公式、定義は何なのでしょうか? また、(3)から(4)へもなぜそうなるのかわかりません。 宜しければ、ご教授ください。 注:Integral = 積分  Integral[ xdx,{s,t} ] = (t^2 - s^2) / 2 を表します

  • 積分路変形の原理で質問

    [問] s∈C, Map((0,2π),C)∋f; (0,2π)∋∀ε→f(ε):=∫_0^{2π} (εexp(iθ))^{s-1}εiexp(iθ)/(exp(εexp(iθ))-1) dθ, 但し, C_ε: z(t):=ε(cos(εt(2π))+isin(εt(2π))) (if ε≧1,1/ε≦t≦2/ε), ε(cos(2πt/ε)+isin(2πt/ε)) (if ε<1,ε≦t≦2ε) この時,fはconstantである事を示せ。 を示しています。半径εの円に囲まれた領域(左図)はs=0でg(s):=(εexp(iθ))^{s-1}εiexp(iθ)/(exp(εexp(iθ))-1) dθは正則ではないのでCauchyの積分定理は使えません。それで半径δ(<ε)の円を考えると ∫_{C_ε}g(s)ds,∫_{C_δ}g(s)ds∈{∫_{C_ε}g(s)ds∈C;0<ε}=:Aで ∫_{C_ε}g(s)ds=∫_{C_δ}g(s)ds …【1】が成り立つ (∵2円に囲まれた円環部分ではf(s)は正則なので積分路変形の原理による)。 Aから任意の2元を採ると必ず等しくなるのでAは単集合とわかる。 更に ∫_{C_ε}g(s)ds=lim_{δ→0}∫_{C_δ}g(s)ds (∵【1】) =0 (∵lim_{r→0}{(x,y)∈R^2;x^2+y^2=r^2}={(0,0)}よりlim_{δ→0}∫_{C_δ}g(s)ds =0と分かる) 従って, ∫_0^{2π} (εexp(iθ))^{s-1}εiexp(iθ)/(exp(εexp(iθ))-1) dθ =0となりfはconstant. となったのですがこれは間違いらしいのです。一体どこがおかしいのでしょうか?

  • 広義積分の問題です。

    ∫ [-1→1] (1/(e^x-e^-x)) dxを積分するとx=0で定義されないので、2つに分けて、  ∫ [-1→0] と∫ [0→1] に分けて極限を用いて積分します。e^x=yとおくと 1/2[log(y-1)/(y+1)]をe^-1→e^tまで定積分してlim[t→-0]とするのと、 1/2[log(y-1)/(y+1)]をe^sからeまで積分してlim[s→+0]とするのの和になると思います。 1/2lim[t→-0][log(y-1)/(y+1)][e^t→e^-1] +lim[s→+0][log(y-1)/(y+1)][e→e^s] (記号の書き方がよくわからないのでこんな式にしてみました) (絶対値記号がうっとうしいので()記号にしました) ところが、lim[t→-0]log(e^t-1)は、ー∞で、lim[s→+0][log(e^s-1)もー∞なので、 全体的には、符号的が、-∞ー(-∞)になるとおもいます。これは、積分不能ということでしょうか。答えには、発散と書いてありますが、∞ー∞は発散するのでしょうか。 よろしくお願いします。

  • 逆ラプラス変換の求め方でアドバイス下さい(簡易説明法)

    逆ラプラス変換の求め方ですが、正式にはフーリエ変換で求めるようですが、しかし私にはかなりレベルが高くピンときません。そこで、簡便法ですが下記でも求められそうです。(一つの考え方というレベルでのことですが) しかし、6)の「式としては lim[x -> 0] は lim[x -> t] (t は >=0 の任意の値) としても成り立つ・・・」というところですがラプラス変換は ∫[0~∞] の定積分ということとマッチしてないような気がします。 たぶんこの求め方自体が邪道(数学的にはかなりいいかげんな気がしてます、また本当に正しいかどうかさえ私のレベルではわかりません)の類のような気がしてますが、簡易説明法の類としてもう少しましな物にならないかな・・・ということで詳しい方にお尋ねします。 ------------------------------ L;ラプラス変換 e^(st);e f(t);f IL;逆ラプラス変換 'n ; n回微分 と省略します。 1) ラプラス変換は、 L = ∫[0~∞] f/e dt の定積分ですが とりあえず f の式形を残したいので不定積分します。(以下 dt は省略) 2) これを部分積分しますと、L = ∫f/e = -f/es + ∫f '/es = -f/es + L'/s となります。 L'を順次展開して L = -Σ[n = 0~∞] f 'n / es^(n+1) と無限級数とすることにより L'n をとり除くことができます。 3) ここで、ラプラス変換は定積分なので、これはとりあえず積分範囲の下限 0 を可変にして x とおくと, L変換できる関数は、上限の∞では f(∞)/se^(s∞) =0 ですので L = lim[x -> 0] {+Σ[n = 0~∞] f 'n (x)/ ( e^(sx)s^(n+1) )} となります。 4) 逆変換は線積分で、 IL = (1/2πi)∫[γ- i∞ ~γ+ i∞] e^(st)L ds これは留数ですので周積分でも求めることができます、(以下ds は省略)またL中の x は可変ですので (ILでのt) = x として以下省略します。 IL = (1/2πi)∫eL = (1/2πi) lim[x -> 0] {+Σ[n = 0~∞] ∫f 'n / s^(n+1)} 5) f 'n はdsには無関係で、また留数は n = 0 以外は 0 なので. 結局 IL = (1/2πi) lim[x -> 0] f∫1/ s 、s = e^(iΘ)とすると、 ds/dΘ = is 、 IL = (1/2πi) lim[x -> 0] f∫[0,2π] is/s dΘ = lim[x -> 0]f(x) 6) 式としては lim[x -> 0] は lim[x -> t] (t は >=0 の任意の値) としても成り立つのでIL = f(t) とすることができる・・・のかな? 無理やりにでもこじつければ、t のすべての範囲で式形が同じなので・・・・とでも言えば何となくそうも思えるのですが・・・私のレベルでは頭がこんがらがってお手上げになってしまいました。

  • 確率(ランダムウォーク)について

    こんにちは、ランダムウォークの期待値に関する問題で分からないものがあり、質問させていただきました。 問題の定義は以下のようになっています。 Bi(iは自然数)は確率pで1、確率1-pで-1の値をとる確率変数である。(ただし0<p<1) またSn=∑[i=1→N]Bi (Nは自然数)とし、E[・]は期待値を表すものとする。 分からない設問は以下のものです。 (i)p=1/2のとき、E[(S2)^4]を求めよ。 (ii)p=1/2のとき、Kn=E[(Sn)^4]/E[(Sn)^2]^2 を求めよ。またlim[N→∞]Knを求めよ とりあえず、(i)が分からないことには(ii)の問題ができないのですが。 ±1に1/2で進むランダムウォークの場合、時刻nでの期待値は0、分散はnですよね。 だから(i)の場合、確率母関数とか使うのかなと思っているのですが、結局S1だろうがS2だろうが期待値は0だから4乗したところで答えは0じゃないかと思い、詰まっています。 どのように考えればいいのでしょうか、回答よろしくお願いいたします。

  • ベルヌーイ試行について

    ベルヌーイ試行について 閲覧ありがとうございます。 現在確率統計の勉強中なのですが分からない問題があるので質問させてください。 成功確率が(0<p<1)のベルヌーイ思考を考える。X[1],X[2], ...を独立な確率変数列で、確率分布は共通で P(X[n]=1)=p P(X[n]=0)=1-pである。ここでT[0]=0とおき。 T[n]=min{k > T[n-1] : X[k] =1} , S[n]=T[n] - T[n-1] (n=1,2...) とし、確率変数列T[1],T[2], ... および S[1],S[2]を定めるとT[n]=S[1]+S[2]+...+S[n] (n=1,2...)となるとき次を答えよ。 (1) S[1],S[2]...は独立な確率変数で、同じ確率分布をもち,各nについてP(Sn = k)=p(p-1)^(k-1) (k=1,2,...)で 与えられることを示せ。ただし独立性についてはS[1]とS[2]の独立性について示せ。 (2)S[n]の期待値と分散を求めよ。 (3)n≧1の時Tnの確率分布、つまり取りうる値の集合Im T[n]と,m∈Im Tnに対する確立P=(Tn=m)を求めよ。 (4)n≧1の時,T[n]の期待値と分散をそれぞれ求めよ。 この4題です。 よろしくお願いします。

  • 確率変数Xnで定義されるYnはやはり確率変数でしょうか?

    確率変数Xnで定義されるYnはやはり確率変数でしょうか? お手数を掛けてすみませんが、教えてください。 以下が問題です、最後の部分で確率変数の定義が引っ掛かります。 「独立な確率変数の列{Xn}において、Xnの平均値をμ、分散をσ^2,(n=1,2,…) とした場合、 Yn = 1/n ?[k=1 n]Xk-μが恒等的に0に確率収束すると示せ」 1/n?[k=1 n]Xk の平均値、E(1/n ?[k=1 n]Xk)=μ 1/n?[k=1 n]Xk の分散が、σ^2(1/n ?[k=1 n]Xk)=σ^2/n となりますので、1/n?[k=1 n]Xkに関するチェビシェフの不等式に代入しますと、 p(|1/n ?[k=1 n]Xk-μ|<ε)>=1-(1/ε・σ^2/n) つまり、p(|Yn|<ε)>=1-(1/ε・σ^2/n) ※0<ε lim[n→∞]p(|Yn|<ε)>=1-(1/ε・σ^2/n) lim[n→∞]p(|Yn|<ε)>=1 確率の性質より lim[n→∞]p(|Yn|<ε)=1 ∴Ynは常に0以下であって、”Ynが確率変数であるならば”、恒等的に0に確率収束すると 示せるのですが… どうなのでしょう?

  • 極限について(確率で使用)

    確率の問題で、微積分を使うものがあるのですが、 微積分が苦手です。どなたかご教授ください。 ∞/∞は極限の不定形であると思うのですが… とある確率Pnと、lim[n→∞]Pnを求める際、 Pn=f(n)/g(n) f(n)=3(n-1)(n-2)+45n(n-1)(n-2)+2(2n-1)(2n-2)+24n(2n-1) g(n)=24(6n-1)(6n-2) となりました。 ここで、Pnが約分できずに困っていたのですが(問題自体が極限の問題なら強引に約分して求めるところですが、確率なのでスマートに約分できないか考えていました)、参考書の回答を見ると、 上記のPn導出過程までは同じで、その後 lim[n→∞]Pn=(3+45+2・2・2+24・2)/(24・6・6)=13/108 となっており、混乱しております。 (∞+x=∞として、∞/∞=1としている?) ここの詳細について、どなたかご教授ください。 ちなみに問題はやや複雑ですが、参考のため載せておきます。 nを自然数とする。袋Aに4n個の白玉と2n個の黒玉を、袋Bにはn個の白玉と5n個の黒玉をいれる。 いまここに、1/4の確率で袋Aを、3/4の確率で袋Bを取り、そこから3個の玉を同時に取り出す時、白玉の方が多ければ袋A、黒玉の方が多ければ袋Bと判定するとする。 判定が誤っている確率をPnとする。 lim[n→∞]Pnを求めよ。