• ベストアンサー

全単射について

集合Uから集合Vの写像(全域写像)を全単射とした時、集合Uと集合Vの要素の数は同じですよね? 教科書に載っててもいい内容なのに載ってなかったので、心配になり聞いてみました。

質問者が選んだベストアンサー

  • ベストアンサー
  • arrysthmia
  • ベストアンサー率38% (442/1154)
回答No.1

概ねそれで良いが、「要素の数は同じ」よりも 「濃度が等しい」と言ったほうが用心深い。 無限集合のときに、嫌なツッコミを受けずに済む。

nx2503210
質問者

お礼

なるほど。そうですね。無限集合たと濃度として扱うというのは聞いたことあります。それで覚えておきます。ありがとうございます!

関連するQ&A

  • 逆写像の条件について

    集合Uから集合Vへの写像fが全単射なら 逆写像f^{-1}が存在し、f^{-1}は全域写像になりますが、 f^{-1}の逆対応はfなので、f^{-1}は全単射で、 fは全域写像になるのでしょうか? また、集合Uから集合Vへの部分写像fが逆写像をとる条件を単射とした場合は 合成写像f◦f^{-1}がUの恒等写像にならないですよね?

  • 全単射の数

    f:{1,2,3,4,5}→{1,2}でできる写像のうち、全単射の数を求めよという問題で、 写像の総数2^5=32。そのうち全射にならないものは、全て1に行く写像と全て2に行く写像の2つ。よって32-2=30が全単射の数と本に書かれていました。 自分は集合{1,2,3,4,5}が集合{1,2}に対応させられると、対応先がどうしても被るので単射になる写像が0で、全単射も0だと思いました。 本の正誤表はインターネットで調べても出てこなかったので、本が正解だと思うのですが、どなたかこの問題の解説をしてくださいお願いします。

  • 自身への写像が全単射となることの証明

    (1) 写像f:A→Aとする。Aが有限集合であるとき、写像fが単射ならばfは全単射である事を示せ。 (2) Aが無限集合であるとき、fは全単射か。そうであれば証明せよ。そうでないなら反例を示せ。 上の問題の(1)は以下のように考えました。 f(A) は A の部分集合。 f(A)≠A と仮定すると、A とその真部分集合との間に全単射が存在したことになる。これは、無限集合の定義であるため、有限集合は全単射である。 このような証明で十分なのでしょうか?また、上のように考えたのでAが無限集合であるときはfは全単射ではないと思うのですが、反例が思いつきません。 わかる人がいれば教えてください。よろしくお願いします。

  • 線形写像における単射性

    「すべての対称式がこの二つの対称式の多項式としてただ一通りに表せる」ということの証明が教科書に載っているのですが、その証明で分からない部分があります。 定理:二変数の多項式環C(u,v)から対称式をなす環S(x,y)への写像φを次のように決める。 φ(f(u,v))=f(x+y,xy) するとこの写像φは全単射写像になる。 この定理において写像φが単射であることの証明がよくわかりません。 φ(f(u,v))=0ならf(u,v)であることを示したあと、  φ(f(u,v))=φ(g(u,v)) →φ(f(u,v))-φ(g(u,v))=0 →φ(f(u,v)-g(u,v))=0 →f(u,v)-g(u,v)=0 ∴f(u,v)=g(u,v) となって単射性がわかると教科書に書いてあるのですが、これでなぜ単射性がわかるのでしょうか?教科書やインターネットで調べたのですがわかりませんでした。 わかる人がいれば詳しく教えてください。よろしくお願いします。

  • 開写像って、どんな写像ですか。

    開写像は、開集合を開集合へ写しますが、どんな写像といえるのでしょうか。 連続写像は「近くにあるものたちを近くに写す写像」ですよね。写像が全単射であれば、逆写像が連続写像であることと同値であるので、「遠くにあるものたちを遠くに写す写像」といえるような気がします。 位相の強弱を考えても、domainの開集合が多ければ、「近いものたち」が少なくなり連続写像になりやすく、domainの開集合が少なければ、「遠いものたち」が少なくなり開写像になりやすいため、直観にも合っていると思います。(恒等写像で、domainにtrivial topology、codomainにdiscrete topologyを入れる例など) (全単射だと開写像であることと閉写像であることは同値になるので、普通に考えると、これは閉写像のイメージかもしれません。) しかしながら、全単射でなければ、例えばRから円周への写像f(x)=exp(2πix)は開写像なので、上記のような解釈はできません。いったい、開写像とは、どういう写像なのでしょうか。 ご回答よろしくお願いします。

  • 同型写像の証明問題

    問題)f:R^n→R^nを同型写像とする。このとき、fの逆写像も同型写像となることを証明せよ。 以上の問題の方針として、Vを集合とした時に写像f:V→V、g:V→Vにおいてf◦g=idv、g◦f=idvならば、f、gは全単射であることを用いるのではないかと思ったのですが、これで正しいでしょうか。間違っていれば正しい方針を教えていただけないでしょうか。

  • 無限集合の定義で

    ∃f:全単射 such that f:A→B (但し、BはAの真部分集合) の時、Aを無限集合と言うのがデデキントの無限集合の定義だと思いますが 非可算集合の時にも(例えば実数体)このような全単射写像はするのでしょうか?

  • 多項式環から対称式のなす環への写像

    ニ変数の多項式環C[u、v]から対称式のなす環 S(x、y)への写像φを次のように定めます。 φ(f(u,v))=f(x+y,xy) ※f(u,v)∈C[u,v] この写像φ:C[u,v]→S(x、y) が全単射になる証明を考えています。どなたか分かる方いませんか? この定理の意味もよく分からないので、意味だけでも教えてください。

  • "無理数全体の集合から実数全体への全単射が存在する"の証明の説明をお願いします。

    次の問題の解答で分からないところがあるので説明をしてもらいたいです。 問: 無理数全体の集合からRへの全単射が存在することを証明せよ 解: R-Q から R への全単射の存在を示せばよい R-Q は無限集合であるから、可算部分集合 A が存在する ここで Q は可算集合なので、A∪Q は可算集合 よって全単射 f: A→A∪Q が存在するので 関数 g:R-Q →Rを     g(x)= { x (x∈R-A)         〔 f(x) (x∈A) と定義すると g は全単射である ■ 最後のところで、なぜgを上のように定義すると全単射になるのかがわかりません。 よろしくおねがいします。

  • 「集合Sの真部分集合S'からSへ全単射写像が存在する時、Sを無限集合という」を使ってのR:無限の証明は?

    無限集合の定義は 「集合Sの真部分集合S'からSへ全単射写像が存在する時、Sを無限集合という」 だと思います。 NやQやZは無限集合であることはわかりますが、 R(実数の集合)が無限集合であることは上の定義から導く事は可能なのでしょうか? N⊂Rで 「無限集合を含む集合は無限集合である」 という命題からRは無限集合と導く他ないのでしょうか?