• 締切済み
  • 困ってます

全単射の数

f:{1,2,3,4,5}→{1,2}でできる写像のうち、全単射の数を求めよという問題で、 写像の総数2^5=32。そのうち全射にならないものは、全て1に行く写像と全て2に行く写像の2つ。よって32-2=30が全単射の数と本に書かれていました。 自分は集合{1,2,3,4,5}が集合{1,2}に対応させられると、対応先がどうしても被るので単射になる写像が0で、全単射も0だと思いました。 本の正誤表はインターネットで調べても出てこなかったので、本が正解だと思うのですが、どなたかこの問題の解説をしてくださいお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数31
  • ありがとう数1

みんなの回答

  • 回答No.1

> 写像の総数2^5=32。そのうち全射にならないものは、全て1に行く写像と全て2に行く写像の2つ。よって32-2=30が とあるのだから、30は「全射」の数ですよね。単射はどう考えても存在しない。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

お返事ありがとうございます。

関連するQ&A

  • 写像の単射と全単射

    写像の定義に関して本で 単射: 任意のyに対して、xに関する方程式f(x)=yの解xが一意的 全射: 任意のyに対して、xに関する方程式f(x)=yの解xが存在 全単射: 任意のyに対して、xに関する方程式f(x)=yの解xが一意的に存在 という説明がありました。 単射であって全単射でない場合はあるのでしょうか?具体例を教えて いただければと思います。

  • 自身への写像が全単射となることの証明

    (1) 写像f:A→Aとする。Aが有限集合であるとき、写像fが単射ならばfは全単射である事を示せ。 (2) Aが無限集合であるとき、fは全単射か。そうであれば証明せよ。そうでないなら反例を示せ。 上の問題の(1)は以下のように考えました。 f(A) は A の部分集合。 f(A)≠A と仮定すると、A とその真部分集合との間に全単射が存在したことになる。これは、無限集合の定義であるため、有限集合は全単射である。 このような証明で十分なのでしょうか?また、上のように考えたのでAが無限集合であるときはfは全単射ではないと思うのですが、反例が思いつきません。 わかる人がいれば教えてください。よろしくお願いします。

  • 全単射について

    集合Uから集合Vの写像(全域写像)を全単射とした時、集合Uと集合Vの要素の数は同じですよね? 教科書に載っててもいい内容なのに載ってなかったので、心配になり聞いてみました。

  • 単射 全射 全単射 について教えてください

    タイトルの通り、単射 全射 全単射についていまいち納得できないので教えてください。 今、手元に問題が5つあるのですが 自然数、整数、実数全体の集合をそれぞれN,Z,Rとする。 (1)f:Z→N f(x)=x2(二乗) (2)f:R→R f(x)=2x(x乗) (3)f:R→R f(x)=sinx (4)f:Z→R f(x)=x3(三乗) (5)f:R→R f(x)=2x+1 例えば、(1)であれば  Zが1のとき、Nは1、Zが2のとき、Nは4という風にZが決定すればNはただひとつ必ず決まるから単射。 でも、Zが2のときは、Zは1とも-1ともいえるので全射ではない、ということなのでしょうか。 全単射、というのはそうするとどういった状態を言うのでしょうか・・・ それぞれの問題も全くちんぷんかんぷんです。 どうか教えてください。

  • 線形代数 全射 単射 全単射 

    行列の線形写像について 全射は行基本変形をすれば単位行列になり判別するみたいなのですが、ほかの単射や全単射は どのような判別の仕方をすればいいのでしょうか。

  • f:X→Y, g:Y→Xを集合Xと集合Yの間の写像

    f:X→Y, g:Y→Xを集合Xと集合Yの間の写像とし、g⚪︎f:X→X、f⚪︎g:Y→Yをそれらの写像の合成写像とする。次の記述1から5について、 1:gが全射ならば、g⚪︎fは全射である。 2:g⚪︎fが全射ならば、fは全射である。 3:g⚪︎fが単射ならば、gは単射である。 4:Yが有限集合で、g⚪︎fとf⚪︎gが全射ならば、fは全単射である。 5:f⚪︎gが全単射ならば、g⚪︎fは全単射である。 常に正しいのは4であるそうですが、その理由がわかりません。どなたか教えて下さいませんか。

  • 写像の証明問題です。よろしくお願いします。

    写像の問題です。よろしくお願いします。 (1)2つの写像f:X→Y、f:Y→Zがある。g・fが全射ならばgは全射であるとする。ここでさらにgが単射であると仮定すればfも全射となることを証明せよ。 (2)自然数Nと零を合わせた集合N∪{0}から整数の集合Zへの写像で、全単射となるものを構成し、その理由を説明せよ。

  • 写像の問題です。よろしくお願いします。

    (1)2つの写像f:X→Y、g:Y→Zがある。g・fが全射ならばgは全射であるとする。ここでさらにgが単射であると仮定すればfも全射となることを証明せよ。 (2)自然数Nと零を合わせた集合N∪{0}から整数の集合Zへの写像で、全単射となるものを構成し、その理由を説明せよ。

  • 合成問題の証明教えてください(><)

    背理法を使ってみたんですがよくわかりませんでした。 写像f:A→B,g:B→Cとその合成写像g。fについて示せ。 1 f,gともに全単射であればg。fはまた全単射である。またこのとき(g。f)^-1=f^-1。g^-1である。 2 g。fが全単射ならばgは全射である。もしこのとき、さらにgが単射でもあれば、fは全射である。 3 g。fが単射ならば、fは単射である。もしこのとき、さらにfが全射でもあれば、gは単射である。 わかる方よろしくお願いします。

  • 単射と全射について

    写像、単射、全射についての質問です。 これらのイメージがいまいちつかめません。 定義とか証明とかいったことが知りたいのでなく、 具体的な問題を解くための理解を得たいと思っています。 具体的な問題を挙げてみると、いまA={a,b,c,}とすると AからAへの写像の数は27になるそうですが、 これはaについて3通りあって、bについても3通りあって、cについても3通りあるから 3×3×3=27という考え方であっているでしょうか? 次に、AからAへの単射の数、全射の数はそれぞれ6通りあるそうですが、 これはどういう考え方なのでしょうか?おそらく3!という計算だと思うのですが、 なぜそのような計算をするかがわかりません。 単射については、行き先の値がダブってはいけないということなのでしょうか? 拙い日本語で申し訳ないのですが、 補足等必要ならいたしますのでどなたか詳しい方は教えてください。よろしくお願いします。