• 締切済み
  • 暇なときにでも

開写像って、どんな写像ですか。

開写像は、開集合を開集合へ写しますが、どんな写像といえるのでしょうか。 連続写像は「近くにあるものたちを近くに写す写像」ですよね。写像が全単射であれば、逆写像が連続写像であることと同値であるので、「遠くにあるものたちを遠くに写す写像」といえるような気がします。 位相の強弱を考えても、domainの開集合が多ければ、「近いものたち」が少なくなり連続写像になりやすく、domainの開集合が少なければ、「遠いものたち」が少なくなり開写像になりやすいため、直観にも合っていると思います。(恒等写像で、domainにtrivial topology、codomainにdiscrete topologyを入れる例など) (全単射だと開写像であることと閉写像であることは同値になるので、普通に考えると、これは閉写像のイメージかもしれません。) しかしながら、全単射でなければ、例えばRから円周への写像f(x)=exp(2πix)は開写像なので、上記のような解釈はできません。いったい、開写像とは、どういう写像なのでしょうか。 ご回答よろしくお願いします。

noname#62967

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数1129
  • ありがとう数1

みんなの回答

  • 回答No.1
noname#221368

 f(x)=exp(2πix)のような、連続開写像で考えます。f:X→Yとして、同値関係、   R:f(x)=f(y) を考えれば、商空間X/Rをつくれます。fが連続なので、X/Rの商位相はもとの位相と両立します。つまりA⊂f(X)が開なら、G:X/R→f(X)をG(c(x))=f(x)として、Ginv(A)はXのRに関する充満開集合でX/Rでも開です。ここで、c(x)はRに関するxの同値類,Ginv(A)はAの逆像です。  従ってGの定義により、Gは連続な全単射で開写像です。問題は、X/Rをどういう意味に読むかですが、それはケースバイケースになると思えます。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご回答ありがとうございます。 開写像は、それ自体では「これこれこういう写像」という特徴をもたず、全単射性や連続性といっしょになって真価を発揮する写像ということなのでしょうか。(同相への最後の砦?) > 従ってGの定義により、Gは連続な全単射で開写像です。 この場合は、写像fをもとに商集合を作り、商位相を入れたため、もとのfで「離れていたものたちが近くに来てしまう」状況が回避されている、とも解釈できるのでしょうか。 まだ、もやもや感は消えませんが、なんとか概念に慣れるよう勉強していきたいと思います。 ありがとうございました。

関連するQ&A

  • 逆写像の条件について

    集合Uから集合Vへの写像fが全単射なら 逆写像f^{-1}が存在し、f^{-1}は全域写像になりますが、 f^{-1}の逆対応はfなので、f^{-1}は全単射で、 fは全域写像になるのでしょうか? また、集合Uから集合Vへの部分写像fが逆写像をとる条件を単射とした場合は 合成写像f◦f^{-1}がUの恒等写像にならないですよね?

  • 集合と位相の問題です。

    X の開集合系O1, O2 がO1  O2(つまりO1 はO2 より弱い位相) を満 たすとする。このとき恒等写像id : X ! X; id(x) = x, は(X;O2) から (X;O1) への連続写像であることを示せ。O1 がO2 より真に弱い位相のと き、id は(X;O1) から(X;O2) への連続写像ではないことを示せ。 どうかお願いします。

  • 連続写像r:X→Aならrは商写像となる事を示せ

    下記の問題で質問です。 (1) Let p:X→Y be a continuous map. Show that if there is a continuous map f:X→Y such that pf equals the identity map of Y,then p is a quotient map. (2) If A⊂X,a retraction of X onto A is a continuous map r:X→A such that r(a)=a for each a∈A. Show that a retraction is a quotient map. (1) p:X→Yを連続写像とせよ。もし合成写像pfがYの恒等写像になるような連続写像f:Y→Xが存在するならpは商写像である事を示せ。 (2) もしA⊂XならXからAへの上へのretraction(引き込み,左逆写像)は∀a∈Aに対してr(a)=aとなる連続写像r:X→Aならrは商写像となる事を示せ。 (1)については f=p^-1の関係になっていてpもp^-1も連続で全単射と言ってあるのだから ∀p^-1(s)∈T(TはXの位相)⇔s∈S(SはYの位相)が言えるから pは商写像。 で正解でしょうか? (2)については 引き込みの定義はf:X→YでB⊂YでBがf(X)の部分集合でない時の逆像f^-1(B)をfによるBの引き戻しとか言ったりするのだと思います。 rはontoと言っているので全射と分かる。 Aの位相として相対位相T_a:={A∩t∈2^X;t∈T} (但しTはXの位相)が取れる。 そこでr^-1(s)∈T⇔s∈T_aを示す。 s∈T_a⇒r^-1(s)∈Tはrが連続である事から直ちに言える。 r^-1(s)∈T⇒s∈T_aである事は r^-1(s)∈T…(2)を採るとs=r(r^-1(s))(∵rは全射)=r^-1(s) (もしr^-1(s)⊂Aなら) …(3) (∵rの定義) ∈T_a (∵(2),(3)と相対位相の定義) しかしr^-1(s)がAに含まれていない場合はこのsは何ともいえません。 どうすればこの場合もs∈T_aが導けますでしょうか?

  • 同相写像であることの証明について。

    同相写像であることの証明について。 R上の開区画(-1,1)からRへの写像 x → x/(1-|x|)が同相写像、つまり全単射かつ連続で逆写像写像であることの証明が分かりません。 どうかご助力お願いします。

  • 連続単射

    いかにも大学教養レベルの位相の問題なんですが、少し混乱してしまっています。どなたかご教示いただけたらと思います。 R^n→R^mへの連続単射fがあったとします。疑問点は三つです。 (i)m≧nか?像f(R^n)に制限すれば連続全単射になります。したがって局所コンパクトからハウスドルフへの連続全単射が存在することになって、局所同相ですが、m<nならそれは位相的にあり得ないように思います。この論証は正しいですか。 (ii)上のことが正しいとして、m≧nを仮定します。一般にfは閉写像ではないと思います。たとえばm=n=1ならf(x)=e^xとおけば、閉集合Rを開集合(0,∞)にうつすからです。一般のm,nではこれも少し自信がありません。閉写像にならない反例は常にあげられるでしょうか。 (iii)またm>nなら単純な埋め込みf(x)→(x,0)(残りの成分を0とおく)、を考えれば、開写像でないのは明らかですが、ではn=mのときはどうか。これがいちばん知りたいことですが、たとえばn=m=1のとき、R上の連続単射を考えていることになって、fは狭義単調。したがって逆もまたそうであって、像に制限すれば同相です。特にR上の単調関数は開区間を開区間にうつします。問題はn=m>1のときで、これもやはり開写像になるのでしょうか。局所同相がきちんと言えると示せなくもないような気がするのですが、困っています。

  • ユークリッド平面と連続開写像

    「fをユークリッド平面R2から実数直線R1への写像としてつぎのように定める。R2∋X=<x1,x2>に対して、f(x)=x1 このとき、fはR2からR1への連続開写像であることを証明せよ。」 以下のような流れで証明できて合っていますでしょうか? また、もっと違う方法、簡単な方法はありますでしょうか? 宜しくお願いします。 ------------------------------------------------------- X(x1,x2)とY(y1,y2)の距離d(ユークリッド空間R2の距離)は d(X,Y)=√{(x1-y1)^2+(x2-y2)^2} f(X)とf(Y)の距離d(ユークリッド空間R1の距離)は d(f(X),f(Y))=√(x1-y1)^2 そうだとすると √(x1-y1)^2 <= √{(x1-y1)^2+(x2-y2)^2} だから ∀ε>0,∃δ>0, d(X,Y) < δ=ε ⇒ d(f(X),f(Y)) <= d(X,Y) < ε fは連続である。 fによってR2の開集合はR1の開集合に写像されることは、連続性と同じ理由で明らか。 ∵Xの任意のε(X)近傍はf(X)のε(X)近傍の上に写像されるから、R2の開集合はR1の開集合に写像されることを意味していて、fは開写像である。 ∴fはR2からR1への連続開写像である。 ----------------------------------------------------------------

  • 教えてください!

    「合同、相似、アフィン同型という関係は同値関係である」ことを証明したいのですが、分かりません。恒等写像、逆写像、写像の合成とかからんでくるのでしょうか?ノート見ても先生に聞いてもさっぱりなんで、アドバイスください!

  • 連続写像について

    fは閉区間[0.1]から実数の集合への連続写像 gは半開区間(0.1]から実数の集合への連続写像 ただし、コンパクト集合上の実数値連続関数に関する最大値の定理は必要なら証明なしで用いてよい。 1.fは最大値をとるといえるか、言えるならば理由を明記し、言えなければ反例を示せ。 2.gは最大値をとるといえるか、言えるならば理由を明記し、言えなければ反例を示せ。 3.gは最大値または最小値のどちらか少なくとも1つは取ると言えるか、 言えるならば理由を明記し、言えなければ反例を示せ。 4.fの像にはどんなものがありえるか、全ての可能性を求め、その理由を明記せよ 5.fが単射であると仮定する。fの像をIとおく。 このとき、fは[0.1]からIへの同相写像であると言えるか。 言えるならば証明し、言えなければ反例をあげよ。 6.gの像にはどんなものがあり得るか?、全ての可能性を求めよ。 という問題を解きたいのですが、手がつけられません。 参考になるサイトでもいいので教えてください。

  • 位相の問題です。

    位相の問題です。 X:位相空間 X^2:積空間 A:X^2の部分空間 A= {(x,x)∈X^2 | x∈X}とXは同相である事を示せ。 写像 f:X→A とするとf:x→(x,x) (x∈X) と置けば明らかに全単射なのですが fもf^-1連続写像である事をどう証明するのかわかりません。 分かる方いましたらよろしくお願いいたします <(_ _)>

  • 同相写像であることの証明

    次の関数fが同相写像であること、すなわちfが全単射で連続、かつf^-1が連続であることを示したいのですが主に2つの関数の連続性が証明できず困っています。ご教授いただければ幸いです。 f: z∈{z∈C:|Im(z)|<π} → e^z∈C \(-∞,0)