• ベストアンサー

位相数学の証明問題です.

どなたか分かるかた,回答をよろしくお願いします. (1)ω:[0,1]→R^2 - {0,0} は原点を通らない平面上の閉曲線(ω(0) = ω(1))とする.このとき,原点,ω(t),ω(t+1/2)が一本の直線上にあるようなtが存在することを示せ. (2)S^2はR^3の原点からの距離が1の図形として考える.連続(または微分可能な)写像f:S^2→S^2ですべてのx∈S^2において,f(x) ≠ xかつf(x)≠-xなるものは存在しないことを証明せよ. よろしくお願いします.

質問者が選んだベストアンサー

  • ベストアンサー
  • kobold
  • ベストアンサー率62% (20/32)
回答No.1

高校で、 「f(0)=f(1)の微分可能な関数で、f'(t)=0となるtが存在する」 というのをやったと思います 発想は同じです (1)ω(t)のx座標、y座標を、x(t),y(t)とします f(t)=x(t)*y(t+1/2)-x(t+1/2)*y(t)を考えると、f(0)=f(1)です f(0)=0ならそれで終了です f(0)>0ならf(1/2)=x(1/2)*y(0)-x(0)y(1/2)=-f(0)<0 f(0)<0の場合も同様 f(t)はそれぞれ正と負の値を取り、 中間値の定理よりf(t)=0となる場所が存在します (2)同様の発想で考えてみて下さい

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 位相数学の証明問題です.

    以下の証明を,どなたか分かる方,お願いします. (1)R^2の3つの部分集合A = { (x,y) | (x,y) ≠(0,0) },B = { (x,y) | x^2 + y^2 > 1 },C = { (x,y) | |x| >1 or |y| > 1 } は,いずれも同相(※)であることを示せ. (2)R^2とR^2 - { (0,0) }(原点を除いた平面)は同相(※)でないことを示せ. ※2つの位相空間X,Yが同相であるとは,2つの連続写像 f :X → Y および g :Y → X で g o f = 1x , f o g = 1y となるものが存在することをいう.

  • 数学の問題です。

    3曲線C1:y=f(x)、C2:y=x^2、C3:(1/2)x^2のグラフが図のようになっている。曲線C2の上の点Pにおいて、y軸に平行な直線を引き、C3との交点をQ、Pにおいてx軸に平行な直線を引き、C1との交点をRとする。曲線C1、C2、線分PRの囲む図形の面積をS1、曲線C2、C3、線分PQの囲む図形の面積をS2とする。 (1)点Pの座標を(u,u^2)、点Rの座標を(v,f(v))とおいたとき、面積S1を定積分を含むuとvの式で表せ。 (2)点Pが曲線C2の上を動くとき、つねにS1=S2が成立する。このとき、関数f(x)を決定せよ。 (1)はS1=∫[0,v]f(x)dx+(2/3)u^3+vu^2になりました。 (2)でS2を計算するとS2=(1/6)u^3になってS1=S2で計算しましたがf(x)まで持っていけません。 詳しく解説していただけないでしょうか。 よろしくお願いします。

  • 至急回答よろしくお願いします!数学IIの軌跡と領域についての問題です。

    至急回答よろしくお願いします!数学IIの軌跡と領域についての問題です。 座標平面上に曲線C:y=x2(xの二乗)と点P(s,t)がある。ただしs2>tとする。 点Pを通り曲線Cに接する曲線は2本存在するが、これらの直線と曲線Cとの接点をそれぞれQ,Rとする。 2点Q,Rを通る直線をlとするとき、次の問いに答えよ。 (1)線分QRの長さをsとtを用いて表せ。 (2)直線lの方程式をsとtを用いて表せ。 (3)直線lと点Pの距離をsとtを用いて表せ。 どうぞよろしくお願いします・・・!

  • 数学の問題です!

    xy平面において、曲線y=e^x(eは自然対数の底)と3つの直線y=x、x=t、x=t+1で囲まれた部分の面積をS(t)とする。 (1)S(t)をtの式で表せ。 (2)S(t)の最小値とそのときのtの値を求めよ。 よろしくお願いします><

  • 誰かこの数学の問題を解いてください

    xyz空間の3点A(1,0,0),B(0,1,0),C(0,0,1)とz=0で表される平面上の直線L:x+y=0の上を動く点P(t,-t,0)を考える。点Aを通り、直線Lに垂直な平面をαとする。t>1/2のとき、四面体ABCPと平面αが交わってできる図形の面積S(t)の最大値を求めよ

  • 位相数学の証明問題です。

    位相数学の証明問題です。 以下の証明を,どなたか分かる方,お願いします。 R^2の3つの部分集合A = { (x,y) | (x,y) ≠(0,0) },B = { (x,y) | x^2 + y^2 > 1 },C = { (x,y) | |x| >1 or |y| > 1 } は,いずれも同相(※)であることを示せ。 ※2つの位相空間X,Yが同相であるとは,2つの連続写像 f :X → Y および g :Y → X で g o f = 1x , f o g = 1y となるものが存在することをいう。

  • 高校数学、3次元の式の考え方

    高校数学、3次元の式の考え方 中心が(1、-3,2)で原点を通る球をSとする。 (1)Sとyz平面の交わりは円になる。この円の中心と半径を求めよ。 (2)Sとz=kの交わりは半径√5の円になるという。kの値を求めよ。 (問題集の解答) (1) Sの半径rは中心(1、-3,2)と原点との距離に等しいからr^2=1^2+(-3)^2+2^2=14 よって、Sの方程式は(x-1)^2+(y+3)^2+(z-2)^2=14 球面Sとyz平面が交わって出来る図形の方程式は (y+3)^2+(z-2)^2=13かつx=0(★) これはyz平面上で中心(0、-3,2)半径√13の円を表す。 (2) Sとz=kが交わって出来る図形の方程式は (x-1)^2+(y+3)^2+(k-2)^2=14、z=k(★) (疑問) (1)直線と直線(曲線)の交点は点になる、平面と平面のぶつかったところは線(交線)になる、というのはわかるのですが、なにとなにがぶつかると平面になるのでしょうか? (2)例えばy=x+1とy=2xは(1,2)を交点に持ちます。 このとき、(1,2)はどのように求めたのかといえば、2直線の交点というのは2つの方程式をともに成り立たせるからこの連立方程式を解けばよいと考え、(1,2)を求めた。 では、 Sとyz平面の交わりをどう考えるのか? S:(x-1)^2+(y+3)^2+(z-2)^2=14、yz平面:x=0をともに満たすのが2つの交わりの正体と考えたのですが、(y+3)^2+(z-2)^2=13かつx=0となるのがイマイチピンときません。 方程式はxyzが満たすべき条件ですから、2つに方程式がなることもあるだろうなとは思いますが、(y+3)^2+(z-2)^2=13かつx=0がSの方程式、yz平面の方程式をともに満たしているというのがわかりません。 (3)3次元では平面の方程式はax+by+cz+d=0という形で表されます。 x=0ならばx=0という条件以外任意という意味ですから、yzへと延びてゆくと考えて、yz平面と判断しているのですが、3次元では直線の方程式はどう表されるのでしょうか?2次元ではx=0は直線なので、これを見ると少し違和感があります。 中心が(1、-3,2)で原点を通る球をSとする。 (1)Sとyz平面の交わりは円になる。この円の中心と半径を求めよ。 (2)Sとz=kの交わりは半径√5の円になるという。kの値を求めよ。 (問題集の解答) (1) Sの半径rは中心(1、-3,2)と原点との距離に等しいからr^2=1^2+(-3)^2+2^2=14 よって、Sの方程式は(x-1)^2+(y+3)^2+(z-2)^2=14 球面Sとyz平面が交わって出来る図形の方程式は (y+3)^2+(z-2)^2=13かつx=0(★) これはyz平面上で中心(0、-3,2)半径√13の円を表す。 (2) Sとz=kが交わって出来る図形の方程式は (x-1)^2+(y+3)^2+(k-2)^2=14、z=k(★) (疑問) (I)直線と直線(曲線)の交点は点になる、平面と平面のぶつかったところは線(交線)になる、というのはわかるのですが、なにとなにがぶつかると平面になるのでしょうか? (II)例えばy=x+1とy=2xは(1,2)を交点に持ちます。 このとき、(1,2)はどのように求めたのかといえば、2直線の交点というのは2つの方程式をともに成り立たせるからこの連立方程式を解けばよいと考え、(1,2)を求めた。 では、 Sとyz平面の交わりをどう考えるのか? S:(x-1)^2+(y+3)^2+(z-2)^2=14、yz平面:x=0をともに満たすのが2つの交わりの正体と考えたのですが、(y+3)^2+(z-2)^2=13かつx=0となるのがイマイチピンときません。 方程式はxyzが満たすべき条件ですから、2つに方程式がなることもあるだろうなとは思いますが、(y+3)^2+(z-2)^2=13かつx=0がSの方程式、yz平面の方程式をともに満たしているというのがわかりません。 (III)3次元では平面の方程式はax+by+cz+d=0という形で表されます。 x=0ならばx=0という条件以外任意という意味ですから、yzへと延びてゆくと考えて、yz平面と判断しているのですが、3次元では直線の方程式はどう表されるのでしょうか?2次元ではx=0は直線なので、これを見ると少し違和感があります。

  • 数学IIIの問題

    定積分の応用問題で面積を求められません。助けてください。解説もお願いします (1) 2曲線y=sinx, y=cosx (-3Π/4≦x≦Π/4)で囲まれた図形の面積S (2) 曲線2x+(1/x)-3とx軸で囲まれた部分の面積S (3) 曲線y=x√x の0≦x≦1の部分の長さL (4) 曲線y=2/(2+x) とx軸、y軸および直線x=2とで囲まれた図形を、x軸の周りに1回転してできる立体の体積V (5) 半径r{x=rcost, y=rsint の円(0≦t≦2Π)の周りの長さL

  • 多様体の問題です。

    多様体の問題です。 S^2= {x∈R^3 | ∥x∥=1}とすると 写像 f:S^2⇒S^2 f(x_1,x_2,x_3) =((x_1-x_2)/2^(1/2),(x_1+x_2)/2^(1/2),x_3) はC^∞級微分同相写像であることを示せ。 写像f:S^2⇒S^2 がC^∞級微分同相写像であるとは次の条件を満たす(1)写像fは全単射 (2)fとf^-1はともにC^∞級 (1)は明らかですがどう証明するのでしょうか? (2)は歯が立ちませんでした 分かる方いましたらよろしくお願いいたします<(_ _)>

  • 位相空間上の連続写像について

    (T,Ot),(S,Os)を位相空間とします。 A⊂Tに対してAは相対位相Oaによる位相空間、 B⊂Tに対してBは相対位相Obによる位相空間とします。 写像f:A→S、g:B→Sが連続写像であり、任意のa∈A∩Bについてf(a)=g(a)であるとします。 写像h:A∪B→Sを、 h(x)=f(x)(x∈A), h(x)=g(x)(x∈B) と定めるときhが連続写像である事を示していただきたいです。 特に、a∈AかつaはBに属さないとき、写像hはaにおいて連続でしょうか? 自分の持ってる教科書の連続写像の定義は、 φ:(T,Ot)→(S,Os)が点a∈Tで連続。 ⇔Φ(a)∈Uとなる任意のU∈Osに対して、あるV∈Ot,a∈Vが存在して、φ(V)⊂Uとなる。 と定めています。