• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:球面積を極座標で求めるやり方)

球面積を極座標で求める方法

このQ&Aのポイント
  • ピンクの球の中にある緑色の長方形の底辺を極座標で求める方法について詳しく教えてください。
  • 底辺の求め方はPP'間の距離を求めることによって行います。具体的にはrsinθとrdφを使い、距離の計算を行います。
  • 化学科で学んだ極座標の知識だけでは十分に理解できないかもしれませんが、詳しく教えますので安心してください。

質問者が選んだベストアンサー

  • ベストアンサー
  • info22
  • ベストアンサー率55% (2225/4034)
回答No.2

#1です。 角度の単位は度数法(1回転の角度が360°)と弧度法(1回転の角度が2π[rad]=[ラジアン])がありますね。 微積分では弧度法の角度が使われます。 弧度法では 弧度法角度φ[rad]=(円弧の長さ)/(半径)で定義されています。 半径1の円周の長さは2πですね。 この円周の長さ2πを円周1周の角度とするのが弧度法の角度の定義になっていて、その角度の単位として[rad]が定められています。 従って、弧度法では (円弧の長さ)=(半径)x(弧度法の角度)…(■) との関係が成立します。 極座標に限らず、弧度法では (■)の関係にあります。 A#1に書いたように (■)の式の(半径)として >|OP|=r*sinθ (■)の式の弧度法の微小角度として > dφ (単位は[rad]) を宛てはめると (円弧の長さPP')は(■)の式から 円弧PP'=(r*sinθ)dφ と求まりますね。

shinn418
質問者

お礼

とても親切な回答ありがとうございます。なるほど、これはかなり分かりやすいです。丁寧に解説してくれたおかげで理解することが出来ました!

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (2)

  • info22
  • ベストアンサー率55% (2225/4034)
回答No.3

#1、#2です。 A#2の補足です。 微小角度では、円弧PP'の長さを2点PP'間の距離PP'として通常使います。

shinn418
質問者

お礼

回答ありがとうございます。助かります!

全文を見る
すると、全ての回答が全文表示されます。
  • info22
  • ベストアンサー率55% (2225/4034)
回答No.1

> P(rsinθ,0,φ)、P'(rsinθ,0,φ+dφ) この座標は間違いです。 球の半径rにsinθをかけたものが |OP|=r*sinθ |OP|を半径として、dφをかけると円弧の長さPP'となります。 円弧PP'=(r*sinθ)dφ

shinn418
質問者

お礼

ありがとうございます。dφは角度の概念だと思っていましたが、極座標では距離と見なすのですか?

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 二つのΓ関数Γ(p)、Γ(q)の積について

    Γ(p)Γ(q)=4∫[0→∞]∫[0→∞]e^(-x^2-y^2)・x^(2p-1)y^(2q-1)dxdy において、 x=rcosθ, y=rsinθ と置いて直交座標(x,y)から極座標(r,θ)に移れば、 Γ(p)Γ(q)=4∫[0→∞]∫[0→Π/2]e^(-r^2)・r^(2p+2q-2)cos^(2p-1)θ・sin^(2q-1)θ・rdθdr となるのですが、 rdθdrの導き方が分かりません。 dx=drcosθ-rsinθdθ, dy=drsinθ+rcosθdθ を用いてみるのですが上手く行きません。 rdθdrの導出方法を詳しく教えて頂けないでしょうか。

  • 座標

    こんにちは。早速質問なんですが 球座標とデカルト座標の関係は x=rsinθcosφ y=rsinθsinφ z=rcosθ この関係はわかるのですがなぜ 線素ベクトルdrや面素ベクトルdSや体積素dV(r^2sinθdrdθdφ)となるのかがわかりません。円筒座標 x=rcosθ y=rsinθ z=z  についても同様にわかりません。 どなたかお願いします。

  • 球の極座標を利用した体積の求め方について

    初めて質問させていただきます、よろしくお願いします. ここからの質問内容は一部こちらのURLを参照しながら説明いたしますので、御覧になりながらお読みになっていただけると分かりやすいかと思います. http://ksgeo.kj.yamagata-u.ac.jp/~kazsan/class/geomath/juusekibun.html 球の体積を、極座標を利用した求め方について調べましたところ 球座標上においた点P(r, θ, φ) における微小体積(dV)の表し方が、 dV=r^{2}sinθdrdθdφ と表されておりました. ここで疑問なのですが、点PRの距離rdθと点PSの距離rsinθdφについて... θとφはπで表される角度ですが πとは、直径が1である円の、円周の長さの値です. ならば、点PRの距離は直径2rに、θを掛けた2rdθで コレと同じく、点PSについても、2rsinθdφなのではないかと思ったのですが この考えは間違っているのでしょうか.よろしくお願い致します.

  • 四角形の座標

    自由度の点から、理論的には4辺の長さとひとつの内角がわかれば四角形の座標を求めることができるはずなのですが、計算することができませんでした。 4辺の長さを時計回りにa, b, c, dとし、dとaの間の角度をθ、dを底辺・その中点に原点を置きますと、 頂点の座標は(d/2, 0), (-d/2, 0), (-d/2+a*cosθ, a*sinθ)と、この3つまでは求めることができたのですが、力量不足から残りのひとつを計算することができませんでした。 条件が不足しているため、最後の座標は計算できないのでしょうか? 脳内でこの図形を変形できないため、そんなことはないと信じているのですが… 最後の座標について教えてください。

  • 極座標による重積分の範囲の取りかた

    ∬[D] sin√(x^2+y^2) dxdy  D:(x^2 + y^2 <= π^2) を極座標でに変換して求めよ。 という問題で、 x = rcosθ、y = rsinθ とおくのはわかるのですが、 rとθの範囲を、どのように置けばいいのかわかりません。 x^2+y^2 = (rcosθ)^2 + (rsinθ)^2 = r^2{(cosθ)^2 + (sinθ)^2} = r^2< = π^2 とした後、-π =< r =< π としたのですが、合っているのでしょうか? rとθの範囲の取りかたを教えてください。お願いします。

  • 確率は座標系に依存?

    「xy座標系で x^2+y^2 = 4の円の中にランダムに点を配置する。このとき点が、単位円x^2+y^2 = 1の中にある確率を求めよ。」という問題があったとします。 単純に考えれば二つの円の面積比をとってP=1/4となるのが自然だと思うのですが、(x,y)=(rcosθ,rsinθ)としてrθ座標系に直してみると面積の比はP=(1*2π)/(2*2π)=1/2となりますよね。 座標系を変換しているのだから面積が変わるのは当然だとも思うのですが、(x,y)と(r,θ)は一対一に対応しているのに確率まで変わってしまうのがどうにも腑に落ちません。確率を計算する際にどうしてrθ座標系に変換すると間違いになるのか、どなたか教えてください。 ちなみにルイスキャロルの枕頭問題集に出ている「平面上にランダムにとった異なる三点が鈍角三角形を作る確率を計算せよ。」という問題を考えているときに、これと似たような問題にぶち当たったので質問させていただきました。

  • 直交座標系での問題が分かりません。

    直行座標(x1,x2)において点P=(p1,p2)が与えられており、 点Q=(q1,q2)はこの座標系でPから角度α、距離dの位置にある。 また直交座標系(x1,x2)にたいして反時計回りにβ回転させた 直交座標系(y1,y2)を考える。 問1 点Pの座標系(y1,y2)における座標(p'1,p'2)をp1,p2,βで表しなさい 問2 点Qの座標系(y1,y2)における座標値(q'1,q'2)をp1,p2,βで表しなさい。 問3 問1でもとめた(p'1,p'2)にたいして座標系(y1,y2)において角度α-β 距離dの位置にある点を考える。 この座標は問2で求めた点Qの座標系(y1,y2)における(q'1,q'2)と 一致することを示しなさい。 --------------------------------------------------------------------- という問題があり 問1は p'1=p1cosβ-p2sinβ p'2=p1sinβ+p2cosβ と計算できましたが 問2以降がわかりません。 レベルの低い問題ですがよろしければ解答をお願いします。

  • 球面上の距離について

    球面上に与えられた2点の最短距離(大円距離)を求めるには球の中心とその2点で作られる2つの線分間の角度(rad)で求め、球の径との積を取れば求まると思います。これは、2点間に紐のような巻尺をあてて目いっぱい引張って測った長さとも言えると思います。 一方、直交曲線座標系の1つである球面座標でのベクトルA(=A1eθ+A2eφ)の長さの2乗は以下の様に表示されます。eθ,eφはそれぞれ、球面上での経度θ(東西)、緯度φ(南北)方向の基底ベクトルです。そのベクトルAの自分自身との内積は、 A・A=A1A1(eθ・eθ)+2A1A2(eθ・eφ)+A2A2(eφ・eφ) となります。ここで、座標の直交性から、(eθ・eφ)=0となります。ゼロとならないのは一般曲線座標とか斜交座標などです。そうしますと、 A・A=A1A1(eθ・eθ)+A2A2(eφ・eφ) x=Rcosφcosθ, y=Rcosφcosθ,z=Rsinφ (Rは球の半径) という関係から、具体的に基底ベクトル(eθ、eφ)を求めて、代入すると、 A・A=(A1Rcosφ)^2+(A2R)^2となります。((eθ・eθ)=0も確かめられます。) この式はAの(経度方向距離^2+緯度方向距離^2)となり、3平方の定理みたいになっています。これは冒頭で示した大円距離と一致しないと思います。具体的に式を求めるときはもっと複雑な式となるはずです。 このような展開のどこに間違いがあるでしょうか。基底ベクトルが空間的に変化することが考慮されていないことが問題のように思いますが。

  • 電磁気学 球座標 電位

    電磁気の問題で、「半径Rの球面上に一様に分布した電荷による静電ポテンシャルを求めよ。」で球極座標がわかりません。この問題はまず、球の極座標を考えます。 V={1/(4πε0)}∫(0→2π)∫(0→π){(σr^2 sinθ dθ dφ)/(√[R^2 +r^2 -2Rrcosθ])} を計算します。 z軸のある点P(0,0,z)と微小面積dSを結んだWは、W=(√[R^2 +r^2 -2Rrcosθ]になるのですが、なぜこういう風になるのでしょうか。W=√[x^2+y^2+z^2]は分かっていて、『√[R^2 +r^2』までは分かるのですが、『 -2Rrcosθ] 』が分かりません。

  • 極座標を用いた重積分

    極座標を用いて重積分をし、最終的に広義積分を求める問題なのですが、非常に煩雑でどうも手がつかないので、教えていただけると助かります。 ∬[D]exp(-px^2-qy^2)dxdy (p,q>0) D={(x,y);x≧0, y≧0} というものです。 x=rcosθ,y=rsinθ と極座標表示をし、積分区間を 0≦r≦R, 0≦θ≦π/2 として積分をし、R→∞とすれば求まるのはわかるのですが、pやqがあるせいで、変数変換をしてもexpの中にθとrが混在しているので、どうやっていいのか途方に暮れています…。 よろしくお願いいたします。