• ベストアンサー

電磁気学 球座標 電位

電磁気の問題で、「半径Rの球面上に一様に分布した電荷による静電ポテンシャルを求めよ。」で球極座標がわかりません。この問題はまず、球の極座標を考えます。 V={1/(4πε0)}∫(0→2π)∫(0→π){(σr^2 sinθ dθ dφ)/(√[R^2 +r^2 -2Rrcosθ])} を計算します。 z軸のある点P(0,0,z)と微小面積dSを結んだWは、W=(√[R^2 +r^2 -2Rrcosθ]になるのですが、なぜこういう風になるのでしょうか。W=√[x^2+y^2+z^2]は分かっていて、『√[R^2 +r^2』までは分かるのですが、『 -2Rrcosθ] 』が分かりません。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.2

>W=√[x^2+y^2+z^2]は分かっていて これが間違ってると思いますよ。 積分の中身はクーロンの法則から出てくる静電ポテンシャルですから、 電荷qの点電荷であれば V = {1/(4πε0)}[ q / W ] で、ここのWは観測点と電荷の位置を結ぶ距離です。 なので、電荷の位置を(X,Y,Z), 観測点を(x,y,z)とすると W=√[(x-X)^2+(y-Y)^2+(z-Z)^2] です。 この問題では点電荷ではなく密度σで球面上に広がった電荷を考えてるので、 球面上の微小面積dSに含まれる電荷量がσdSとなり、 この微小面積からのVへの寄与をdVとすると dV={1/(4πε0{(σdS)/ W} =1/(4πε0{(σdS)/ (√[(x-X)^2+(y-Y)^2+(z-Z)^2])} であり、これを電荷がある位置全て(つまり球面上)でX, Y, Zについて 積分すれば答になります。 これをそのまま積分するよりも球座標を使ったほうが簡単になるので 球座標を取ると dS = R^2 sinθdθdφ W = √[R^2 +r^2 -2Rrcosθ]  (これの導出は#1さんが書かれています) ※ 質問文中のr^2 sinθはR^2 sinθの間違いだろうと思います。 確認してください。

その他の回答 (1)

  • Akira_Oji
  • ベストアンサー率57% (45/78)
回答No.1

これは余弦定理で、できます。 (同じことですが) ベクトルで説明します。今、ベクトルAを「A_」のように書きます。 原点からの位置ベクトルで、2つの点の位置ベクトル r_ と R_ の間の角度をθとすれば、その2点間の距離は |r_-R_|=√{(r_-R_)・(r_-R_)} =√{r_・r_+R_・R_-2r_・R_} =√{r^2+R^2-2rRcosθ} となります。

関連するQ&A

  • 電磁気 球座標

    電磁気の問題で、「半径Rの球面上に一様に分布した電荷による静電ポテンシャルを求めよ。」で積分の範囲についてわかりません。この問題はまず、球の極座標を考えます。 V={1/(4πε0)}∫(0→2π)∫(0→π){(σr^2 sinθ dθ dφ)/(√[R^2 +r^2 +2Rrcosθ])} を計算するのですが、 なぜ、積分範囲が、なぜdθとdφがこうなるのでしょうか。またなぜ違うのでしょうか。

  • 電磁気学

    半径aの球内に電荷Qが一様に分布しているときの静電ポテンシャルを求めよ。 球内の電場は0だと思ったのですがこたえはE=Qr/4πε0a^3とかいてあったのですがなぜですか? 僕はどんな間違いをしてしまったのですか?

  • 電磁気学

    こんにちは 以下の問題がわからなくて困っています わかる方教えていただけないでしょうか? 原子核を半径Rの球として、陽子の電荷eは核内に一様に分布しているものとする。 原子番号Zの核の中心からr(r<R)なる点の静電ポテンシャルは Ze/εV × (R2/2 - r2/6) で与えられることを示し、また原子核のCoulombエネルギーは We = 1/4πε × 3/5 × (Ze)2/R で与えられることを示せ。 ただし、Vは原子核の体積である。 よろしくお願いします。

  • 電磁気学

    電磁気学の問題で自分の回答と問題の解答が違うのですがどう違うのか教えてください 問題  2個の電荷Q〔C〕とーQ〔C〕が2a(m)離れているとき、無限遠に対する電位が0の等電位面を求めよ 解答 電荷Q〔C〕とーQ〔C〕の座標をそれぞれ(a,0,0)(-a,0,0)とおく。そのとき点P(x、y、z)の無限縁を基準とした電位は Q/4πε(1/√((x-a)^2+y^2+z^2))-√((x+a)^2+y^2+z^2))) となる。x=0のとき電位は0なので等電位面はy-z平面である 自分の回答 電荷Q〔C〕とーQ〔C〕からある点Pの距離をそれぞれr、r’として、点Pの電位は Q/4πε(1/r-1/r')=Q/4πε(r'-r/rr') 距離が2aよりr'=2a-r よって Q/4πε(2(a-r)/r(2a-r)) これが0となるのはr=aのときより 等電位面は半径aの球である と解答は面であるのに対して自分の考えは球なのですがどこが間違っているのでしょうか?お願いします

  • 電磁気学について

    大学で電磁気学を学んでいるのですが、分からない問題がありヒントを頂きたく質問させていただきます。 問題は 互いの中心が一致した2つの球面を考える。これらの半径をそれぞれR1,R2(R1<R2)とする。内球面上に電荷q1、外球面上に電荷q2をそれぞれ与えるとき、球の中心からの距離rの点における電場E(r)を求めよ。 また、電位の基準を無限遠としたときr=R1、r=R2における電位を求めよ。 というものです。 問題文中のEはベクトルではないため、習った公式であるE(r)=q1(r-r1)/4πε|r-r1|^3 (r,r1は電荷の位置ベクトルであり、Eはrの位置におけるq1による電場のベクトル)は使えません。 勾配を使えばいいのかと思ったのですが、どのように扱えばいいのか分からず……。 ご回答いただければ助かります。よろしくお願いします。

  • 電磁気学

    電磁気学の問題を解いていったときにわからない問題があったのでアドバイスお願いします。 問1  一様な電磁界の位置ベクトルrによって定まる点におけるポテンシャルは  φ=-E・r,A=(1/2)(B×r) であることを証明せよ。 問2  原点を中心に半径aの球体積は、一応な密度ρの電荷を含む。この電荷分布のために生ずる電解E(r)とポテンシャルφ(r)とを求めよ。 問1についてはどのように証明を進めていったらいいのかすらわかりません。 問2はerを曲面座標のrの単位べくとるとすると r>aのとき、E=(a^3ρ/3εr^2)[er],φ=(a^3ρ/3εr)とし、 0≦r≦aのとき、E=(ρ/3ε)r[er], としたのですがポテンシャルの求め方がわかりません。r=aのときとそのほかではポテンシャルは違うと思うのですがそれをどのように式に表したらよいかわかりません。 よろしくお願いします。

  • 電磁気学についての質問です

    原点Oを中心とする半径aの球内部に電荷が密度qで一様に分布している。このときOから点r=(x,y,z)までの距離をrとすると 静電ポテンシャルは φ(r)=q/6ε(3a^2-r^2) (r≦a) φ(r)=qa^3/3εr (r>a)と表せる このとき静電ポテンシャルφ(r)を変数r/aの関数に書き直せ この問題が分かりません…

  • 電磁気学で静電ポテンシャルに関する問題です

    問題文: 半径aの無限に長い円柱の中に、電荷密度が  ρ(r) = 3Q(a-r) / πa^3 の電荷が分布している。この円柱の内外の静電ポテンシャルを求めよ。(rは円柱の中心からの距離である) ---------------- 円柱内外での、単位長さあたりの電荷量と、それによって求められる静電場が r<aのとき… 電荷量:∫[0→r] ρ(r)・2πr dr = Qr^2(3a-2r)/a^3 静電場:Ein(r)=Qr(3a-2r) / 2πε0a^3 r>aのとき… 電荷量:∫[0→a] ρ(r)・2πr dr = Q 静電場:Eout(r)=Q / 2πε0r になることは分かります。 ここで静電ポテンシャルΦin(r)とΦout(r)を求めたいのですが… Φ=-∫[A→B]E(ベクトル)・ds(ベクトル) にどう当てはめていいのか分かりません。 E(ベクトル)・ds(ベクトル)を静電場E(r)と置き換えてrで積分すればいいのだと思うのですが ・積分区間をどうしたらいいのか分からない ・仮に[∞→r]で積分すると、答えが∞になる ので困っています。 そもそも考え方が違う とかだと元も子もないのですが、どなたか教えてください。

  • 電磁気学の問題どなたか教えて下さい(TT)

    電磁気学の問題どなたか教えて下さい(TT) 以下のレポート問題が出ました,全く分かりません(泣 どなたか解いていただけないでしょうか?>< 問2に関しては教科書のページをアップ出来ないので、分かる範囲内だけで構いません。 宜しくお願いしますm(_ _)m <問1> 図1のような半径aの導体球があり,これを内半径b,外半径cの導半球殻が取り囲んでいる. 導体球と導体球殻の中心は一致している。半径aの導体球に電荷QAを与え,これを取り囲んでいる導体球殻に電荷QBを与える. 球と球殻の中心からの距離をrとするとrの範囲は,(1)c<r (2)b<r<c (3)a<r<b (4)r<aに分類できる. (1)(1)~(4)の各部の静電場E1~E4と静電ポテンシャルφ1~φ4を求めよ。解答に際してはこれらの導出過程を記述すること。なお、静電ポテンシャルについては無限遠における静電ポテンシャルの値をゼロにとる。 (2)QA=+Q、QB=-Qとして、同心球形コンデンの静電容量Cを求めよ。 (ヒント:電位差はφ3(a)-φ3(b)で与えられる) <問2> 電気双極子モーメントが作る電場の計算で、教科書p39~p41では静電ポテンシャルを求め、これをr>>sとしてr1とr2についてテーラー展開を行い、その後に電場を計算している。これは唯一の計算方法ではない。では、以下の静電ポテンシャルから静電場を計算し、それからs/rを微小量として展開を行うことによって電気双極子モーメントが作る電場について教科書と同じ結果が得られることを示せ。なお、記号は教科書のp39~p41の記述をそのまま使っており、ここでは記号の定義の記述を省略する。 φ=(q/4πε0)×{(1/r1)-(1/r2)} (ε:イプシロンと打てば出ます) Er=-∂φ/∂rおよびEθ=(-1/r)×(∂φ/∂θ)

  • 電磁気学の問題です

    内球の半径がa、外球殻の内外半径がそれぞれb、cである同心球導体が真空中に置かれている。 それぞれに+Qおよび-Qの電荷を帯電させたときの静電エネルギーWを求めよ。 解答:W=Q^2/8πε (1/a-1/b) さっぱり分からないので解答までの導出を詳しく教えてください。