• ベストアンサー

イデアルの重要性が分かりません

イデアルの定義は、 ある集合Rに含まれる部分集合である環Iの元aとRの元bの積が Iの元であるときのaをイデアルと呼ぶ というものですが、これの一体どこがどう重要なのでしょうか? よく書籍では環論においてもっとも重要な概念で一つである というように説明されますが、どこがどう重要なのか分かりません。 どなたか平易な言葉で説明して頂けないでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
  • 33550336
  • ベストアンサー率40% (22/55)
回答No.1

まずイデアルの定義が間違えてます。 イデアルはそれ自身環である必要はありません。 例えば整数環の中の2の倍数全体からなる集合はイデアルですが、環ではありませんよね。 で、イデアルの重要性ですが、群論は勉強されましたか? 剰余群を定義するためには正規部分群である必要がありましたが、 剰余環を定義するためにはイデアルで割る必要があります。 剰余環がどれだけ重要かは、環論に限らず、現代数学を少しでも勉強すればすぐにわかります。 また多項式環の素イデアルは代数多様体といい、代数幾何学の主な研究対象のひとつです。 他にも数論や代数トポロジーなどでもイデアルは度々現れます。 勉強していくうちに重要性もわかると思いますよ。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • イデアルについて

    環Rのイデアル I_1=(a1,...,an)、I_2=(b1,...,bn)の積I_1I_2を (aibj)_{1≦i≦n,1≦j≦m}:nm個の元aibjで生成されるイデアル で定義する (例 (I_1=(a1,a2)、I_2=(b1,b2,b3) (⇒I_1I_2=(a1b1,a1b2,a1b3,a2b1,a2b2,a2b3) この時、Z[√(-5)]のイデアル α1=(2,1+√(-5))、α2=(2,1-√(-5)) β1=(3,1+√(-5))、β2=(3,1-√(-5)) に対し α1α2=(2)、β1β2=(3) α1β1=(1+√(-5))、α2β2=(1-√(-5)) を示せ 解き方がわかりません。 教えてください(。í _ ì。)

  • 極大素イデアルと極大イデアル

    まず、質問文が長くなったことと、定義などをいろいろ細かく指定したことをお詫びします。 また、極大素イデアルというのは maximal prime ideal を勝手に日本語にしたもので、正しい数学用語かどうかわかりません。 この質問では乗法の単位元1をもつ可換環のみを考え、素イデアルは(1)に等しくないとします。 記号の使い方で、A⊆BはAがBの部分集合、A⊂BはAがBの真部分集合を表すとします。 このとき、素イデアルPに対して、P⊂P’⊂(1)を満たす素イデアルP’が存在しないとき、Pを極大素イデアルと定義します。 ある数学書には、 Rをネター環、PをRの極大イデアル、A≠(1)をRのイデアルとするとき、 P^n ⊆A⊆Pとなる自然数 n が存在する⇔Aは準素イデアルで√A=Pが成り立つ という命題が載っていて、別の数学書には、 Rをネター環、PをRの極大素イデアル、A≠(1)をRのイデアルとするとき、 P^n ⊆Aとなる自然数 n が存在する⇔Aは準素イデアルで√A=Pが成り立つ という命題が載っています。ふたつを見比べると、これらの命題に限れば極大素イデアルと極大イデアルは互換性をもつといえます。 質問したいのは上の命題の証明ではなく、極大素イデアルと極大イデアルは同じものかどうかということです。 極大イデアルが極大素イデアルであることは明らかですが、逆は成り立つでしょうか。 成り立たないとすれば、P⊂B⊂(1)を満たす極大素イデアルPと素イデアルでないイデアルBが存在する例があるはずですが、そういう例が見つかりません。 極大素イデアルが極大イデアルであることを証明しようとも試みましたが、証明できませんでした。 有理整数環Zでは極大素イデアルは必ず極大イデアルになり、k[x, y] の極大素イデアル (x, y) も極大イデアルですが、例を挙げただけでは証明になりませんので。 どうか、アドバイスをよろしくお願いします。

  • イデアルの和集合

    Rは単位元1をもつ可換環。A,B,CはRのイデアルとする。 (1)A∪BはRのイデアルか。 (2)A⊂C, B⊂Cとするとき、A∪BとCの包含関係を調べよ。 (1)はイデアルにならないと思いますが、特別な場合はイデアルになりますよね。 A=ゼロイデアルとか、B=Rでもイデアルですよね。 線形で、2つの部分空間X,YがあってX∪Yも部分空間になるとき、X⊆YかX⊇Yだと教わりました。 イデアルだと、A∪BがイデアルとA⊆BかA⊇Bは同値ですか。 A⊆BかA⊇Bは十分条件なのは明らかですが、必要条件かどうかがわかりません。 (2)は集合として考えればA∪B⊆Cだと思うのですが、イデアルなのでA∪B⊂Cかもしれないと思います。 Cの元の中にA∪Bの元でないものがあればいいのですが、なかなか思いつきません。 やはり真部分集合じゃなくて、部分集合までしか成り立たないのでしょうか。

  • イデアルについて

    (1)イデアルのノルムについて 初等整数論講義などの二次体に限った議論をしている本では、イデアルIのノルムN'(I)(あえて'をつけています)とは共役イデアル(Aの元の共役全体の集合)をI'としたときII'=(n)となる有理整数のことだと定義しています(nの存在は証明されている)。 これは一般のデデキント環AにおけるイデアルIのノルムN_A(I):=|A/I|に矛盾するでしょうか? しないとしたら証明をお願いします。 (2)アルティン環のイデアルは有限個ですか? k[x^2, x^3]/(x^4) においてax^2 + bx^3 (a,b は体kの元)で生成されるイデアルたちが無限個ありそうなので、偽と踏んでいますが厳密な証明を与えられる方はいらっしゃいませんか。 (3)Z[x]のイデアル(の形)を全て求めてください。ただし https://math.stackexchange.com/questions/300170/ … にある情報は断りなく使用して良いです。解かれているか否か、情報だけでもいいですし、考察でもいいので是非ご回答ください。

  • イデアルを使った証明

    Rを環とし、I,JをRのイデアルとしたとき 『IとJの共通部分I∩Jもイデアルになる』 ということを証明したいのですが、どうしたらいいか分かりません。 イデアルの定義を応用してなんとかなるのかなど、 考えてみたのですが、分かりません。 どのように証明したらいいか教えてください。 お願いしますm(__)m

  • イデアルについてです。

    Rは可換環。 IはRの素イデアル。 J1、J2がRのイデアルであるとき、J1J2⊂I ⇔ J1⊂I または J2⊂I であることを証明する問題なんですが、どうして左向きの矢印は、イデアルの定義から自明だといえるのでしょうか? かなりあきれる質問だと思われますが、くわしく教えてもらえたらうれしいです。

  • イデアル

    可換体論のネーター環の章ですが、ここではRは可換環だけの仮定と思います。 (補題3.6.9) P1、----,Pnが環Rの素イデアルで、イデアルAがどのPiにも含まれていないならば,Aの元aで、どのPiにも含まれないものがある。 証明 nについての帰納法 n=1 OK n=n-1 OK仮定 nのとき Pi⊆Pn (i<n)なるiがあれば、Piを省いたn-1個に適用すればよい。 すべてのi<nに関しPiがPnに含まれないとする。 a1∈A、で∀i < nに関し、Piに含まれない元a1をとる。a1がPnに含まれなければ補題を満たすので、a1∈Pnとする。 P1---Pn-1⊆Pnとすると、Pnは素イデアルゆえ Pi⊆Pn(∃i< n)となり仮定に背くからP1---Pn-1はPnに包まれない。よってP1---Pn-1の元bでPnに包まれないものをとる。a=a1+bとおけばよい。 Q.E.D. と参考書にありましたが、aがAの元というのだけがわかりません。もしaがAの元とすればbもAの元ということになりますよね。でもbはP1---Pn-1の元bでPnに包まれないものというだけなので疑問です。 どうかよろしくお願いします。

  • 環論、イデアルの問題です。

    R:可換環 I:Rのイデアル f: R→R/I によって、R/Iのイデアルの集合とRのIを含むイデアルの集合は1対1に対応する。 お願いします。

  • ZnがZのイデアルである事を示したいのです。

    ZnがZのイデアルである事を示したいのです。 イデアルの定義は (i)x,y∈Znが和に関して閉じている (ii) r∈Zの時、rx∈Zn、xr∈Zn だと思います。 (i)を示す ∀(a)mod(n),(b)mod(n)∈Zn (a)mod(n)+(b)mod(n)=(a+b)mod(n)∈Zn (∵Znは群なので) (ii)を示す 次にZはZ1の事なので ∀(z)mod(1)∈Zをとると (a)mod(n)・(z)mod(1)=????? とここから先に進めません。 積はどう書けるのでしょうか?

  • 代数学の問題なんですが…

    (1)Q[x]において{f(x)∈Q[x] | f(√2)=0}はイデアルか? (2)2は{a+b√-5 | a,b∈Z}において規約元か? (3)可換環Z/12Zのイデアルとその包含関係を書け (4)Q(√2)(={a+b√2 | a,b∈Q})からそれ自身への環準同型をすべて書け。 (5)Rを環、IをRの両側イデアルとする。  R/Iの元a+Iとb+Iの和をa+b+I、積をab+Iとするとこの和と積は  代表元a,bの取り方に依存しないこと(即ちWell-defind)であることを示せ 代数学がちょっと苦手なので簡単な問題かもしれませんが どうかご指南おねがいしますm(_ _)m

このQ&Aのポイント
  • 【MFC-J6583CDW】で用紙を入れ直しても用紙トレイが抜けない状態に困っています。
  • 使用環境はWindows10で無線LAN接続です。
  • ひかり回線を利用しています。
回答を見る