• ベストアンサー

代数学☆イデアルの問題

N:自然数 A,B:イデアル のとき AB={a1・b1+・・・+an・bn         |ai∈A,bi∈B(i=1,・・・,n)n∈N} とする。 R:可換環 M1,M2:Rのイデアル M1+M2=R       のとき M1M1+M2M2=R   を示せ。 という問題なんですが、 M1M1=M1,M2M2=M2 より M1M1+M2M2=R と答えたら、間違いでした。 また、 M1の元とM2の元が互いに素であることを使う ということをヒントとしてもらったのですが、わかりません。 アドバイスをください!!よろしくお願いします。

  • ronson
  • お礼率97% (213/218)

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

まずM1M1=M1は成立しません。Rが有理整数環Z、M1 が2の倍数の集合の時、M1M1は4の倍数の集合です。 Rが有理整数環Zであるときに  M1M1+M2M2 = R の証明を書きます。M1=(m), M2=(n) であるときm^2とn^2が互いに素でないとすれば  a|m^2, a|n^2 となる単元でないaが存在します。aを素因数分解したときの因子の一つをpとすると  p|m^2, p|n^2 が成り立ちます。pは素数なので  p|m, p|n これはmとnが互いに素であることと矛盾します。したがってm^2とn^2は互いに素です。単項イデアル整域でこれが成立しますが、一般の可換環で成立するかどうかは分かりません。

ronson
質問者

お礼

ありがとうございます!! う~ん、結構難しいですね。 単項イデアル整域でないときも考えてみます。 お礼が遅くなってしまってすみませんでした。

その他の回答 (1)

  • achar1
  • ベストアンサー率66% (2/3)
回答No.2

まず、M1+M2=R、1∈Rより、1=x+y x∈M1、y∈M2 と表せる。 任意のz∈Rを、z=a+b a∈M1、b∈M2 と表す。 z=z*1*1=(a+b)(x+y)(x+y)=(a+b)(xx+2xy+yy)=(axx+2axy+bxx)+(ayy+2bxy+byy) ここで、M1、M2がRのイデアルであるから、 xx∈M1、xy∈M1、bx∈M1、ay∈M2、xy∈M2、yy∈M2  となるので、 axx+2axy+bxx∈M1M1、ayy+2bxy+byy∈M2M2 となる。 よって、z∈M1M1+M2M2 となるので、題意は示された。 なんか、こじつけみたいな証明ですけど。。。。。

ronson
質問者

お礼

ありがとうございます!! ほ~!!こんなやり方もあるんですね。 参考にさせていただきます。 お礼が遅くなってしまってすみません。

関連するQ&A

  • イデアル

    可換体論のネーター環の章ですが、ここではRは可換環だけの仮定と思います。 (補題3.6.9) P1、----,Pnが環Rの素イデアルで、イデアルAがどのPiにも含まれていないならば,Aの元aで、どのPiにも含まれないものがある。 証明 nについての帰納法 n=1 OK n=n-1 OK仮定 nのとき Pi⊆Pn (i<n)なるiがあれば、Piを省いたn-1個に適用すればよい。 すべてのi<nに関しPiがPnに含まれないとする。 a1∈A、で∀i < nに関し、Piに含まれない元a1をとる。a1がPnに含まれなければ補題を満たすので、a1∈Pnとする。 P1---Pn-1⊆Pnとすると、Pnは素イデアルゆえ Pi⊆Pn(∃i< n)となり仮定に背くからP1---Pn-1はPnに包まれない。よってP1---Pn-1の元bでPnに包まれないものをとる。a=a1+bとおけばよい。 Q.E.D. と参考書にありましたが、aがAの元というのだけがわかりません。もしaがAの元とすればbもAの元ということになりますよね。でもbはP1---Pn-1の元bでPnに包まれないものというだけなので疑問です。 どうかよろしくお願いします。

  • 極大素イデアルと極大イデアル

    まず、質問文が長くなったことと、定義などをいろいろ細かく指定したことをお詫びします。 また、極大素イデアルというのは maximal prime ideal を勝手に日本語にしたもので、正しい数学用語かどうかわかりません。 この質問では乗法の単位元1をもつ可換環のみを考え、素イデアルは(1)に等しくないとします。 記号の使い方で、A⊆BはAがBの部分集合、A⊂BはAがBの真部分集合を表すとします。 このとき、素イデアルPに対して、P⊂P’⊂(1)を満たす素イデアルP’が存在しないとき、Pを極大素イデアルと定義します。 ある数学書には、 Rをネター環、PをRの極大イデアル、A≠(1)をRのイデアルとするとき、 P^n ⊆A⊆Pとなる自然数 n が存在する⇔Aは準素イデアルで√A=Pが成り立つ という命題が載っていて、別の数学書には、 Rをネター環、PをRの極大素イデアル、A≠(1)をRのイデアルとするとき、 P^n ⊆Aとなる自然数 n が存在する⇔Aは準素イデアルで√A=Pが成り立つ という命題が載っています。ふたつを見比べると、これらの命題に限れば極大素イデアルと極大イデアルは互換性をもつといえます。 質問したいのは上の命題の証明ではなく、極大素イデアルと極大イデアルは同じものかどうかということです。 極大イデアルが極大素イデアルであることは明らかですが、逆は成り立つでしょうか。 成り立たないとすれば、P⊂B⊂(1)を満たす極大素イデアルPと素イデアルでないイデアルBが存在する例があるはずですが、そういう例が見つかりません。 極大素イデアルが極大イデアルであることを証明しようとも試みましたが、証明できませんでした。 有理整数環Zでは極大素イデアルは必ず極大イデアルになり、k[x, y] の極大素イデアル (x, y) も極大イデアルですが、例を挙げただけでは証明になりませんので。 どうか、アドバイスをよろしくお願いします。

  • 代数学☆イデアルの問題!!

    次の問題について教えてください!! N:自然数 R:環 L,M:左イデアル LM={x1・y1+x2・y2+・・・+xn・yn |         xi∈L,yi∈M (i=1,2,・・・,n),n∈N} LMがイデアルであることを示せ。 左イデアルであることは示せたんですが、右イデアルであることが示せません。 右イデアルを示すために a∈LM,r∈Rに対して a=x1・y1+x2・y2+・・・+xn・yn (xi∈L,yi∈M) とおくと、 a・r=(x1・y1+x2・y2+・・・+xn・yn)・r    =(x1・y1)・r+(x2・y2)・r+・・・+(xn・yn)・r    =x1・(y1・r)+x2・(y2・r)+・・・+xn・(yn・r) になって、 a・r∈LMを示すのにyi・r∈Mを示すのかな、と思ったのですが、 どう示すのか分りません。  やり方自体間違っているのでしょうか、それともyi・r∈Mを示す方法があるのでしょうか。教えてください!!

  • イデアルの共通部分と積

    四月から代数幾何をやる準備で基礎を復習しているのですが、解けない問題があるので質問します。 Rは乗法の単位元1をもつ可換環。 A,BはRのイデアルで、A+B=(1)とする。 このとき、任意の自然数m,nに対して A^m ∩ B^n = A^m B^n は成り立ちますか。 m=n=1のとき成り立つので、その系でしょうか。 m,nと文字が2つあるので数学的帰納法では証明できず、反例も見つかりませんでした。

  • イデアルについてです。

    Rは可換環。 IはRの素イデアル。 J1、J2がRのイデアルであるとき、J1J2⊂I ⇔ J1⊂I または J2⊂I であることを証明する問題なんですが、どうして左向きの矢印は、イデアルの定義から自明だといえるのでしょうか? かなりあきれる質問だと思われますが、くわしく教えてもらえたらうれしいです。

  • 代数学の問題なんですが…

    (1)Q[x]において{f(x)∈Q[x] | f(√2)=0}はイデアルか? (2)2は{a+b√-5 | a,b∈Z}において規約元か? (3)可換環Z/12Zのイデアルとその包含関係を書け (4)Q(√2)(={a+b√2 | a,b∈Q})からそれ自身への環準同型をすべて書け。 (5)Rを環、IをRの両側イデアルとする。  R/Iの元a+Iとb+Iの和をa+b+I、積をab+Iとするとこの和と積は  代表元a,bの取り方に依存しないこと(即ちWell-defind)であることを示せ 代数学がちょっと苦手なので簡単な問題かもしれませんが どうかご指南おねがいしますm(_ _)m

  • 環論、イデアルの問題です。

    R:可換環 I:Rのイデアル f: R→R/I によって、R/Iのイデアルの集合とRのIを含むイデアルの集合は1対1に対応する。 お願いします。

  • 部分空間に関する問題について・・・。

    以下の問題についての証明なのですが,これでいいかどうか添削して下さい。 問題)V=R^n(n≧2)とし,第n座標が0であるようなVの元全体の集合をWとする。WはVの部分空間である。(Rは太文字と思ってください。) 証明)まず零ベクトル0は0=(0,0,…,0)であるから,0∈Wである。    またWの元ai,biは第i座標(1≦i≦n)が0であって   ai=(a1,a2,…,ai,…,an),bi=(b1,b2,…,bi,…,bn)と表わされ,   ai+bi=(a1+b1,a2+b2,…,ai+bi,…,an+bn)   cai=(ca1,ca2,…,cai,…,can)(cは任意の実数)   ここで,ai=bi=0であるから    ai+bi=0,cai=0    したがって,ai+bi,caiはともにai+bi,cai∈Wである。    ゆえに,Wは部分空間である。

  • 代数の環の分野の問題です

    代数の環の分野の問題です 可換環Rが与えられたとき文字Xを不定元とする R係数の多項式は p(X)=a_nX^n+a_n-1X^n-1+…+a_1X+a_0 =Σ(i=0からn)a_iX^i (a_i∈R) なる形のものです Xを不定元とするR係数の多項式全体の集合は可換環をなしこの可換環をR[X} とします R[X_1X_2,…,X_n]=(R[X_1X_2,…,X_n-1])[X_n] が定義され R[X_1X_2,…,X_n]をR上のn変数多項式環、 その元をR係数n変数多項式というとき n変数多項式は整理すると Σ_(0≦i_1,i_2,…,i_n) a_i_1i_2…i_nX_1^i_1X_2^i_2…X_n^i_n (a_i_1…a_i_n∈Rで和は有限和)とかける ことを示したいです 教えてください 文章分かりにくくてごめんなさい

  • イデアルの和集合

    Rは単位元1をもつ可換環。A,B,CはRのイデアルとする。 (1)A∪BはRのイデアルか。 (2)A⊂C, B⊂Cとするとき、A∪BとCの包含関係を調べよ。 (1)はイデアルにならないと思いますが、特別な場合はイデアルになりますよね。 A=ゼロイデアルとか、B=Rでもイデアルですよね。 線形で、2つの部分空間X,YがあってX∪Yも部分空間になるとき、X⊆YかX⊇Yだと教わりました。 イデアルだと、A∪BがイデアルとA⊆BかA⊇Bは同値ですか。 A⊆BかA⊇Bは十分条件なのは明らかですが、必要条件かどうかがわかりません。 (2)は集合として考えればA∪B⊆Cだと思うのですが、イデアルなのでA∪B⊂Cかもしれないと思います。 Cの元の中にA∪Bの元でないものがあればいいのですが、なかなか思いつきません。 やはり真部分集合じゃなくて、部分集合までしか成り立たないのでしょうか。