• ベストアンサー

数Σ級na_nが収束するならΣa_nは収束することを示す。

grothendieckの回答

回答No.2

#1の方の方針でやれば容易なので自分で考えてください

gsb57529
質問者

お礼

回答ありがとうございます。 テスト期間中で、パソコンを封印していたため、返信が遅くなりました・・。 以下が私の考える証明です。 ∀ε>0をとる。 Σna_nが収束することから、 適当な番号Nをとって、m>n≧N⇒|(n+1)a_(n+1)+・・・+ma_m|<mε |(n+1)a_(n+1)+・・・+ma_m|<εについて、 |(n+1)a_(n+1)+・・・+ma_m|<|ma_(n+1)+・・・+ma_m| =m|a_(n+1)+・・・+a_m| よって、 |a_(n+1)+・・・+a_m|<|(n+1)a_(n+1)+・・・+ma_m|<ε すなわち、 |a_(n+1)+・・・+a_m|<ε ゆえに、Σa_nは収束する。 ・・いかがでしょうか?

gsb57529
質問者

補足

証明の3行目を間違えました。 適当な番号Nをとって、m>n≧N⇒|(n+1)a_(n+1)+・・・+ma_m|<ε ・・です。

関連するQ&A

  • Σ[n=0..∞]a_nが収束するならΣ[n=0..∞](-1)^na_nも収束?

    こんにちは。 Σ[n=0..∞]a_nが収束するならΣ[n=0..∞](-1)^na_nも収束。 という真偽判定の問題なのです。 真だと思うのですがどのようにして証明できますでしょうか?

  • 級数ΣC_nが収束する⇒limC_n=0

    級数ΣC_nが収束する⇒limC_n=0 「級数ΣC_n (n=1→∞)が収束する⇒limC_n=0 (n→∞)である」ことを示す問題なのですが… 以下のような証明があったのですが、いまいちよくわかりません。 <証明> ΣC_nが収束するならば 任意のε>0に対して、適当な自然数Nが存在し、 n>m≧N ⇒ |c_(m+1)+c_(m+2)+…+c_n|<ε このとき、m=n-1とおくと、 n≧N ⇒ |c_n|<ε よって、lim(c_n)=0 特に、 m=n-1とおいて、どうして|c_n|<εになるのかがわかりません。 回答よろしくお願いします。

  • Σa_kとΣb_kを正項級数.lim(a_n/b_n)=0且つΣb_kが収束ならばΣa_kも収束

    [問]Σ[n=0..∞]a_kとΣ[n=0..∞]b_kを共に正項級数とする。 lim[n→∞](a_n/b_n)=0且つΣ[n=0..∞]b_kが収束ならばΣ[n=0..∞]a_kも収束。 を証明したいのですがどうすれば分かりません。 Σ[n=0..∞]a_kが正項級数とlim[n→∞]lim(a_n/b_n)=0より a_n≦0 これからどのようにすればいいのでしょうか?

  • 級数の収束・発散の判定Σ(cos^4(arctan(n))/n^(1/4)n)

    a_n=(cos^4(arctan(n))/n^(1/4)n) において、 Σa_nの収束・発散を調べています。 cos^4(arctan(n))/n^(1/4)n =1/{n^(1/4)n(n^2+1)^2} なので lim a_n+1/a_n が1未満なら収束ですよね。 a_n+1/a_n=n/(n+1)・(n/(n+1))^(1/4)・(n^4+2n^2+1)/(n^4+4n^3+16n^2+4) となり、 lim a_n+1/a_n=1 となってしまうのでこの級数は発散すると思います。 しかしながら Σa_n<Σ1/n^(5/4) といえ、調和級数の収束・発散条件からΣa_nは収束となってしますよね。 一体、何処を間違っているのでょうか?

  • 級数Σa_n が絶対収束すれば、・・・

    級数Σa_n が絶対収束すれば、級数Σ(a_n)^2は収束することを示したいです。(nは1から∞) 対偶を使って証明したらいいのかとも考えましたが、どうもうまくいきません;; どなたか教えてください。

  • Σa_nx^nが絶対収束することを示す問題について…

    Σa_nx^nが絶対収束することを示す問題について… Σ(n=0→∞)をべき級数とし、x0(≠0)に対し数列{a_nx0^n}(n=0→∞)が有界であると仮定する。このとき、|x|<|x0|を満たすすべてのxに対してΣ(n=→∞)a_nx^nは絶対収束することを示せ。 という問題で、以下のような証明があるのですが、少しわからないところがあるので教えていただきたいです。 証明 a_nx0^nは有界であるから、 |a_nx0^n|≦M (n=0,1,2,…)となる定数M>0が存在する。 |x|<|x0|とすると、 |a_nx^n|≦M(|x|/|x0|)^n |x|/|x0|<1より、Σ(n=0→∞)M(|x|/|x0|)^nは収束する。 よって、Σa_nx^nは絶対収束する。 // このような証明があったのですが… |x|<|x0|とすると、 |a_nx^n|≦M(|x|/|x0|)^n の部分がよくわかりません。 なぜこのような不等式が成り立つのでしょうか?? 回答よろしくお願いします。

  • 級数の収束について

    最近この手の質問ばかりですみません・・・ 問題集を解いていっているのですが以下の3問がどうしても解けません。 ヒントだけでも良いので教えていただけないでしょうか。もちろん詳細に回答していただければありがたいです。 1) lim[n->∞]Σ[k=0~∞]1/(n^α)が収束することを示せ。(α>1) 2) lim[n->∞]a_n=aのときにlim[n->∞](1/n)Σ[k=n~∞]a_k=a であることを示せ。 3) lim[n->∞](1+a_1)(1+a_2)・・・(1+a_n)=∞のときΣ[k=n~∞](a_n)/((1+a_1)(1+a_2)・・・(1+a_n))=1 であることを示せ。 1は事実だけは知ってるのですが、なかなか証明ができなくて・・・。 2はa_n/nをうまく置き換えればいいように思うのですがうまくできません。 3はまったくわからないです。

  • 級数の収束について

    次の級数が収束することの証明が分かりません。 1+Σ(n=1,∞){(-1)^n*a(a-1)...(a-n+1)/n!} aは実数で a>0 とする 第n項をA_nとするとA_n+1/A_nの極限値は1となります。 また、A_nは0に収束しますが、交代級数でもありません。

  • 収束半径の求め方

    y=a0Σn=0~∞(x^n/n!) 上記級数の収束半径を求めよという問題なのですが、 答えが、 r=lim n→∞|an/an+1|=lim n→∞(n+1)=∞ になることはわかっているのですが、 どのような考え方でこのようになるのかわかりません。 教えていただけましたら幸いです。 宜しくお願いいたします。

  • 級数の収束問題について

    問題集を解いていっているのですが以下の3問がどうしても解けません。 ヒントだけでも良いので教えていただけないでしょうか。もちろん詳細に回答していただければありがたいです。 1) Σ[n=1~∞]1/(n^α)が収束することを示せ。(α>1) 2) lim[n->∞]a_n=aのときにlim[n->∞](1/n)Σ[k=1~∞]a_k=a であることを示せ。 3) lim[n->∞](1+a_1)(1+a_2)・・・(1+a_n)=∞のときΣ[n=1~∞](a_n)/((1+a_1)(1+a_2)・・・(1+a_n))=1 であることを示せ。 1は事実だけは知ってるのですが、なかなか証明ができなくて・・・。 2はa_n/nをうまく置き換えればいいように思うのですがうまくできません。 3はまったくわからないです・・・。 下に画像を張っておきます。よろしくお願いいたします。