• ベストアンサー
  • すぐに回答を!

∫【1→2】{(x^2-x+4)/x(x^3+1)}dx

∫【1→2】{(x^2-x+4)/x(x^3+1)}dxという定積分の求め方がわかりません。 私はまず部分分数に分けて、 (x^2-x+4)/x(x^3+1) =4/x-(4x^2-x+1)/(x^3+1)として、 ∫【1→2】{(x^2-x+4)/x(x^3+1)}dx =(16/3)*log2-(8/3)*log3+【1→2】∫(x-1)/(x^3+1)dx というところまで求めたのですが、最後の定積分が求められず、ここで手が止ま ってしまいました。 ちなみに最終的な答えは3*log(4/3)となるそうです。問題集には答えしか書か れてないので困っています(^_^;)

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数41
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

x^3+1=(x+1)(x^2-x+1) でさらに部分分数分解を行ってください

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • ∮[0→1](12x+12)/(x^3+8)dxの

    ∮[0→1](12x+12)/(x^3+8)dxの値は何でしょうか。部分分数分解で12(x+1)/(x+2)(x^2-2x+4)まではできたのですが、(これも合ってるか怪しいですが...)ここから積分をしようとすると第2項がぐちゃぐちゃになります。(ちなみに第1項は(-1/16)log(3/2)になりました)よろしくお願いします。

  • ∫{x/(x+1)}dxの解き方

    とても初歩的なのですが、積分についての質問です。 ∫{x/(x+1)}dxの解き方が分かりません。 以下のように解きました。 ∫{x/(x+1)}dx x+1=tとする x=t-1よりdx=dt よって ∫{x/(x+1)}dx=∫{(t-1)/t}dt =∫(1-1/t)dt =t-log(t)+C (C:積分定数) =(x+1)-log(x+1)+C こうなったのですが、どうやら計算違いのようで、解は「x-log(x+1)+C」となっていました。 解が出なかったわけではなく、最初の時点で「x/(x+1)」を「1-1/(x+1)」と変形したらちゃんと解は出たのですが、上記の解法の間違いが分からず、もやもやしています。 どこが間違っているのでしょうか。 置換積分が使えるのは特定の数式の場合のみなのでしょうか。 積分は不得意なので、見苦しい点あるかと思いますが、ご指摘お願いします。

  • 数(3)・不定積分 : log(x+2)、log(1-x)の積分の仕方

    数(3)の不定積分で「log(x+2)」「log(1-x)」(どちらも底はeです)の積分をやったのですが、授業で理解しきれなかった事があります。 最初の問題は部分積分法の公式を使うと ∫log(x+2)=log(x+2)・x-∫1/(x+2)・xdx …(1)となり、 解答は log(x+2)・x-x+2log|x+2|+C (Cは積分定数) となるのですが、(1)式の右辺、「∫1/(x+2)・xdx」の部分を、何故、それぞれを約分して「∫1dx+∫1/2xdx」としてはいけないのかが判りません。 次の問題は、上と同じようにして部分積分法の公式を使うと ∫log(1-x)=log(1-x)・x+∫x/(1-x)dx …(2)となり、 解答は x・log(1-x)-x-log|1-x|+C(Cは積分定数) となるのですが、ここで、(2)式の右辺、∫x/(1-x)dxの部分を、部分分数に分けて∫{-1+1/(1-x)}にするのですが(今の式の『-1』は、(1-x)で割られない、普通の-1です)、そういう風に変形する意味が分かりません。 分かる方が居ましたら、教えて下さると嬉しいです!

  • 積分問題∫√(x^2+a)dxです。

    ∫√(x^2+a)dxの積分が分かりません。∫1/√(x^2+a)dxは部分積分を用いて、t=x+√(x^2+a)とおいてlog|x+√(x^2+a)|+c で解けましたが、同じようにできるのでしょうか。よろしくお願いします。

  • ∫{{(x+1)^n - 1} / x}dx = ?

    nは任意の自然数です。 ∫{{(x+1)^n - 1} / x}dxの積分がわかりません。 ∫{(x+1)^n / x}dx - ∫(1/x )dxと変形することを思いついたのですが、すると今度は∫{(x+1)^n / x}dxがわかりません (^^; nを定めてからの積分ならできるのですが、そうすると(x+1)^nの展開と、xで割って積分する作業が煩雑この上ありません。 こういった式でも「∫x^ndx=x^(n+1)/(n+1) + C」のように簡潔な形に出来ないものでしょうか? 見覚えのない形の式の積分ですが、そもそも積分が可能でしょうか。

  • 不定積分

    次の問題なんですが、一問目は答えが出ていて二問目が分かりません。 またどちらとも途中のしきが立てられないので、どなたかご指南お願いします。 (1)∫(1/x^3+1)dx    この問題ではx^3+1=(x+1)(x^2-x+1)で分数分解して、両辺にx^3を掛けて係数比較するんですが、そのあとの積分の計算ができません。。。  答えは1/6log(x+1)^2/x^2-x+1 + 1/√3Arctan((2x-1)/√3)らしいんですが。。。 (2)∫{1/(1+x^3)^4/3}dx  こちらの問題は解き方がわかりません。

  • √とlogの積分

    ∫√x*log(x+2)dxは部分分数で解けると思うのですが、 与式=2/3*x^(3/2)*log(x+2)-2/3*∫x^(3/2)*1/(x+2)dx となり、後ろの積分をどのように解けばいいかわからないです。

  • 数III相当 積分関連 方針

    連問投稿で申し訳ないです。 学校で与えられた、詳解のない問題集なのですが、 積分関連が苦手で、消化できないものが5つあります。 答えのない問題集で勉強するのは効率が悪いとは思いますが、 どなたか詳しい方、どうぞよろしくお願いします。答えは最後に書きました。 <第1> 2つの定積分 A=∫[0,π] {e^(-ax)*sin^2(x)} dx 及び B=∫[0,π] {e^(-ax)*cos^2(x)} dx で、AとBを求めよ。 ※A+BとA-Bを求めて、何とかするんじゃないかと思うのですが...? <第2> 関数f(x)はf(0)=0を満たす。また、g(x)=∫[0,x] {(e^x + e^t)*f´(t)} dt とおく。g´(x)を求めよ。 さらに、e^x*f(x)=-3x^2*e^x+g(x) が成り立つとき、f(x)を求めよ。 <第3> 定積分∫[0,1] log{(x+2)/(x+1)} dx の値を求めよ。 さらに、lim[n→∞] 〔{(2n+1)(2n+2)…(2n+n)}/{(n+1)(n+2)…(n+n)}〕^(1/n) を求めよ。 ※log(x+2)-log(x+1)と分解して、それぞれを部分積分してみたのですが、答えにない定数が残ってしまいました。 <第4> x≧0のとき、不等式x-(1/2)*(x^2) ≦log(x+1) ≦x を証明せよ。 さらに、lim[n→∞]  log〔1+{k/(n^2)}〕 を求めよ。 <第5> 定数c≠0としてlim[x→∞] 〔{sin√(x+c)}-{sin√(x)}〕 を求めよ。 答えは、 <第1>A=2{1-e^(-ax)}/{a(a^2 +4)}及び B={a^2 +2}{1-e^(-ax)}/ {a(a^2 +4)} <第2>g´(x)=e^x*f(x) + 2e^x*f´(x)及びf(x)= x^3+3x^2 <第3>log(27/16)及び27/16 <第4>証明は略されてる。極限は1/2 <第5>0                    どうぞよろしくお願いしします。

  • 大学数学の積分の問題 ∫[0→π/4]log(tanx+1)dx

    問題集の問題ですが、下の問題がわからなかったので、どなたかわかる方教えてください。 ∫[0→π/4]log(1+tanx)dx 答えは(π/8)*log2になるようです。 学校が春休みで先生に聞くことも出来ません。 それと∫log(cosx)dxや∫log(sinx)dxをとくコツのようなものがあれば教えてほしいです。不定積分では解けないという 話を聞いたことがあるのですが、たとえば0<x<π/4のときはどうすれいいのでしょうか。

  • ∫1/√(x^2+a)dxの求め方

    ∫1/√(x^2+a)dxの求め方 積分公式の一つに ∫1/√(x^2+a)dx=log{x+√(x^2+a)}+C(Cは積分定数) がありますよね。 これってどのように証明すればよいのですか? x=asinθで置換積分してもうまく解けないのですが…。