• ベストアンサー

正規変換に関する質問です

2次元ユニタリ空間Vの正規変換をTとする。 このとき、次のようなVの部分空間のW_0,W_1,W_2が存在する。 (1)W_1,W_2はともにT-不変 (2){0}=W_0⊂W_1⊂W_2=V (3)dim(W_1)=1 dim(W_2)=2 このとき・・・ W_1は(計量空間)W_2の部分空間であるからW_1^⊥をW_1の直交補空間とすると W_2=W_1◎W_1^⊥(直和)となる・・・(※) W_2の任意の元をu[2]とすると、u[1]∈W_1 u[1']∈W_1^⊥を用いて u[2]=u[1]+u[1']と一意的に表せる。 このとき T(u[1'])=T(u[2])-T(u[1]) 今、W_1,W_2はともにT-不変であるから T(u[2])∈W_2 T(u[1])∈W_1となる。ここで再び(※)より T(u[2])-T(u[1])=αu[1']と一意的に表せる(αは定数) つまりT(u[1'])=αu[1']⊂W_1^⊥ とできたわけだが、u[1']は任意にとれるので これは結局、T(W_1^⊥)⊂W_1^⊥ つまりW_1^⊥がT-不変であるということである。 さて・・・ W_1の元のうち、ノルムが1となるものx[1]をとる。 さらに、W_2の元でW_1の任意の元と直交するもの全体 つまりW_1^⊥の元のうち、ノルムが1となるものx[2]をとる。 すると<x[1],x[2]>はW_2(V)の正規直交基底である。 また、W_1とW_1^⊥はともにT-不変であるから 今、W_1とW_1^⊥の次元がともに1であることを考慮して T(x[1])=αx[1] T[x[2]]=βx[2]なる数αβが存在するといえる。 よって、x[1]x[2]はTの固有ベクトルであるともいえる。 私は、一般にn次元のユニタリ空間Vの正規変換Tの固有ベクトルのみからなるVの正規直交基底がいつでもとれることを示そうと思い、まず一番簡単なn=2の場合について、上記のように考えたのですが、あっているでしょうか? 私は、一般のn次元ユニタリ空間の場合にも下記の定理 [定理] n次元ユニタリ空間Vの正規変換をTとする。 このとき、次のようなVの部分空間のW_0,W_1,・・・W_nが存在する。 (1)W_iはともにT-不変(i=1,2,・・・n) (2){0}=W_0⊂W_1⊂・・・W_n-1⊂W_n=V (3)dim(W_i)=dim(W_i-1)+1 (i=1,2,・・・n) を使って同じような操作を続けて、最終的にはn個の固有ベクトルからなるVの正規直交基底が得られるんだと思っているのですが・・。 どなたか添削よろしくお願いいたししますm(_ _)m

noname#87373
noname#87373

質問者が選んだベストアンサー

  • ベストアンサー
  • de_Raemon
  • ベストアンサー率80% (25/31)
回答No.1

Tが正規変換であることを利用すると、より簡単に証明できそうな気がします。 W_1のノルムが1の元をx[1]、W_1^⊥のノルムが1の元をx[2]とすると内積 (x[1],x[2])=0 (1) 今W_1がT-不変なので T(x[1])=αx[1] (2) と書ける。x[1]とT(x[2])との内積を考えると (x[1],T(x[2]))=(T^*(x[1]),x[2]) (3) ここで正規変換TがエルミートならばT^*=Tなので(1)(2)より(3)は (x[1],T(x[2]))=(T^*(x[1]),x[2])=(T(x[1]),x[2])=(αx[1],x[2])=0 (4) また正規変換TがユニタリならばT^*=T^(-1)なので(1)(2)より(3)は (x[1],T(x[2]))=(T^*(x[1]),x[2])=(T^(-1)(x[1]),x[2])=((1/α)x[1],x[2])=0 (5) (4)(5)からT(x[2])はx[1]と直交するので T(x[2])∈W_1^⊥ → T(W_1^⊥)⊂W_1^⊥ (6) (6)はW_1^⊥がT-不変であることに他ならないので T(x[2])=βx[2] (7) と書ける。(2)(7)からx[1]とx[2]が固有ベクトル、αとβが固有値である。 ・・・証明は以上です。 が、前提条件のT-不変かつdim(W_1)=1を満たす部分空間 W_1の存在は自明じゃないように思えます。 またn次元への一般化ですが、縮退がある場合とか考えるとすんなりとはゆかない気が・・・

noname#87373
質問者

補足

回答ありがとうございます! 回答文にある証明のほうが 私のようにゴチャゴチャ書いてなくてスッキリしてる 印象を受けました!参考にさせていただきます。 >前提条件のT-不変かつdim(W_1)=1を満たす部分空間  W_1の存在は自明じゃないように思えます。 前提条件とは 2次元ユニタリ空間Vの正規変換をTとする。 このとき、次のようなVの部分空間のW_0,W_1,W_2が存在する。 (1)W_1,W_2はともにT-不変 (2){0}=W_0⊂W_1⊂W_2=V (3)dim(W_1)=1 dim(W_2)=2 のことですよね!? 一応これがn次元で成り立つことの証明はしてありますから、このようなW_1はあるといえます。(長くなるので証明は書いていません。すいません。) >またn次元への一般化ですが、縮退がある場合とか考えるとすんなりとはゆかない気が・・ 難しいですかね~・・・(汗 まずW_1からノルム1の元x[1]をとり。 次にW_1^⊥⊂W_2の元からノルム1の元x[2]をとる。 次にW_2^⊥⊂W_3の元からノルム1の元x[3]をとる。 ・ ・ ・ 次にW_n-2^⊥⊂W_n-1の元からノルム1の元x[n-1]をとる。 最後にW_n-1^⊥⊂W_nの元からノルム1の元x[n]をとる。 するとx[i]の決め方から、 <x[1],x[2],・・・x[n]>はW_n=Vの正規直交基底であり これらはすべて固有ベクトル・・。 とできませんかねぇ・・・・。

その他の回答 (1)

  • gef00675
  • ベストアンサー率56% (57/100)
回答No.2

Tの固有ベクトルからなるVの正規直交基底が存在することの証明は、次の順序で示すことができるということはご存知のことと思います。 (1)複素ベクトル空間におけるTの固有値の存在。(代数方程式が複素数解をもつ) (2)正規変換Tの定義:T・T* = T*・T (3)λがTの固有値ならば、λの共役複素数はT*の固有値である。 (4)正規変換Tの異なる固有値に対応する固有ベクトルは直交する。 (5)正規変換Tの固有空間Fの直交補空間F^⊥はT-不変である。 (6)正規変換Tの固有空間をF1,...,Frとすると、Vはそれらの直交直和に分解できる。 したがって、F1,...,Frのそれぞれの正規直交基底をとってきて、全部集めればVの正規直交基底が作れることになります。(ただし、(6)をいうには、Vの次元が有限であることが前提にあります) さて、いま、ご質問の中の[定理]  n次元ユニタリ空間Vの正規変換をTとする。  このとき、次のようなVの部分空間のW_0,W_1,・・・W_nが存在する。  (1)W_iはともにT-不変(i=1,2,・・・n)  (2){0}=W_0⊂W_1⊂・・・⊂W_n-1⊂W_n=V  (3)dim(W_i)=dim(W_i-1)+1 (i=1,2,・・・n) を認めるとするなら、あなたがしたように、直和W_i+F_i=W_(i+1), (i=1,2,...,n)になるような部分空間F_iを作ることができて、しかもF_jはT-不変でかつ1次元なので、F_iの元は固有ベクトルになっています。あとは、F_iが互いに直交するということ(質問文の※の式)をいえばよいだけでしょう。 ただ、せっかくT-不変な部分空間を作っておきながら、固有ベクトルを1個ずつ拾っていくというのは、少々まわりくどいような気がしないでもありません。その[定理]を証明する過程で、やるべきことがすべて終わっているように思えるのですが。

noname#87373
質問者

お礼

回答ありがとうございます。 もう一回証明を見直して出直します。 ありがとうございましたm(_ _)m

関連するQ&A

  • 基底の変換行列

    基底の変換行列 空間V(dim V=n)の2種類の正規直交基底{a_i},{b_i}(i=1,…,n)があるとき,この2種類の基底はユニタリ行列で結ばれていると思いますが,これはユニタリ行列をU,そのij成分をu_{ij}とするとき, (1) a_i=Σ_[j=1]^[n] u_{ij} b_j と書いても, (2) a_i=U b_i (i=1,…,n) と書いても同じことですか?

  • 正規直交基底の存在性

    計量ベクトル空間の正規直交基底の存在性についてです. 証明の手順は以下のようにやろうと考えています. 計量ベクトル空間V,dimV=n ⇒線形独立な集合Aが存在する(1) ⇒Vの基底E:={ei}(i=1,2,...n)が存在する(2) (Aにいくつかベクトルを足すことで構成する) ⇒Vに正規直交系E':={ei'}}(i=1,2,...n)が存在する(3) (Eにシュミットの直交化法を施す) ⇒E'はVの基底である(4) ⇒E'はVの正規直交基底である(5) (1)⇒(2)⇒(3)は示せるのですが, (3)⇒(4)が示せません. どなたか,アドバイスなどよろしくお願いいたします.

  • 線形変換(随伴変換)に関する質問です

    「線形空間Vのひとつの基底E=<e[1],e[2],・・・e[n]>を選べば、 VからK^nへの同型写像ψが決まるから、この意味で、基底(E;ψ)と言うことにする。 Vをユニタリ空間、TをVの線形変換とし、ある正規直交基底に関するTの行列をAとする。この基底に関して、 Aの随伴行列A^*によって表現されるVの線形変換をTの随伴変換と言い、T^*で表す。 T^*は、Vの任意の二元x,yに対して内積に関する等式 [T^*(x),y]=[x,T(y)]・・・※ が成立することで特徴づけられる。 実際、この基底を(E;ψ)とすれば [A^*(ψ(x)),ψ(y)]=[ψ(x),A(ψ(y))]より※が成立。」 という記述が教科書にあったのですが、 ※の成立を示すのに [A^*(ψ(x)),ψ(y)]=[ψ(x),A(ψ(y))]を示している理由を 私は [T^*(x),y]=[ψ^(-1)(A^*(ψ(x)),ψ^(-1)(ψ(x))] 今、ψ^(-1)は計量同型写像であるから [ψ^(-1)(A^*(ψ(x)),ψ^(-1)(ψ(x))]=[A^*(ψ(x)),ψ(y)] 同様に [x,T(y)]=[ψ(x),A(ψ(y))]なので 結局、※は[A^*(ψ(x)),ψ(y)]=[ψ(x),A(ψ(y))]に帰着される・・。 と考えたのですが、これであっていますか? ψが計量同型写像だからそのい逆写像も計量同型写像であるので [ψ^(-1)(a),ψ^(-1)(b)]=[a,b]である というのを使っているのかな?と思ったのですが。 どなたか詳しい方、添削よろしくお願い致します。 ※[,]は内積、ψ^(-1)はψの逆写像の意です。

  • 数学

    Aが実対称行列で、u_1,,,u_nがAの固有ベクトルで、正規直交基底とします。 Au_i=λ_iu_iとして、λ_1>=,,,λ_nとします。 WをR^nのi次元の部分空間としたとき、 λ_i>=min_(u∈W, u≠0)(u^(転置)Au)/u^(転置)u となる証明をどなたかお願いします。

  • 次の表現行列は(実)ユニタリである事を示せ

    VをR上の有限次元内積空間とする. [問] Rを実数体とする。VをR上の有限次元内積空間とする。 B:={v_1,v_2,…,v_n}とB':={w_1,w_2,…,w_n}を夫々,Vの正規直交基底とする。 f:V→Vを線形写像とする時, 基底BとB'に関するfの表現行列をM_B_B'(f)で表す。 (1) id:V→Vを恒等写像とすると,M_B_B'(id)は実ユニタリ(直交行列(?))であることを示せ。 [ヒント:<w_i,w_i>=1,i≠jなら<w_i,w_j>=0.また表現w_i=Σa_ijv_j (a_ij∈R)] (2) f:V→Vをf(v_i)=w_i (i=1,2,…,n)とすると,M_B_B'(f)はユニタリであることを示せ。 と言う問題です。 これらはどのようにして求めればいいのでしょうか? (1)については 表現行列の定義から x=Σa_iv_i (a_1,a_2,…,a_n∈R)とするとM_B_B'(id)(x)=M_B_B'(x) (∵恒等写像の定義) =Σ[i=1..n]c_iw_i (但し,c_1,c_2,…,c_n∈R) と書け、 ユニタリの定義から内積が保存される事,つまり <M_B_B'(id)(x),M_B_B'(id)(y)>=<x,y>を示せばいいのだと思います。 y=Σb_iv_i (b_1,b_2,…,b_n∈R)として, M_B_B'(id)(y)=Σ[i=1..n]d_iw_i (但し, d_1,d_2,…,d_n∈R) とすると <M_B_B'(id)(x),M_B_B'(id)(y)>=<Σ[i=1..n]c_iw_i,Σ[i=1..n]d_iw_i> =Σ[i=1..n]<c_iw_i,d_iw_i> (∵直交の定義) =Σ[i=1..n]c_id_i (∵正規の定義) となり,<x,y>から遠ざかっております。 どのようにして証明すればいいのでしょうか? (2)についてはユニタリの定義はノルムを保存する事 <M_B_B'(f)(x),M_B_B'(f)(x)>=<x,x> を示す事だと思います。 M_B_B'(f)(x)=M_B_B'(f)(Σa_iv_i)=M_B_B'(f(Σa_iv_i)=Σ[i=1..n]a'_iw_i M_B_B'(f)(y)=M_B_B'(f)(Σb_iv_i)=M_B_B'(f(Σb_iv_i)=Σ[i=1..n]b'_iw_i となり,=<x,x>にたどり着けません。どうすればいいのでしょうか?

  • 線形の証明問題を教えてください

    線形代数の証明問題を教えてください 1、m×n行列全体のつくるベクトルの空間Vにおいて、(i.j)成分が1で他の成分がすべて0であるm×n行列をEijとすると、 Eij(i=1,2・・・、m ;j=1,2・・・n)はVの基底である事を示せ。 2、Vを有限次元ベクトル空間、U、WをVの部分空間とするとき dim(U+W)+dim(U∩W)=dimU+dimW であることを示せ。 (dim(U∩W)=r ,dimU=s ,dimW=tとする。a1,・・・,arをU∩Wの基底とし、これを拡張して得られるUの基底を a1,・・・,ar, b1・・・,bs-r, Wの基底をa1,・・・,ar ,c1・・・,ct-rとする。 a1,・・・,ar, b1・・・,bs-r, c1・・・,ct-r がU+Wの基底になることを示す。) この2問がどうしても証明できません。どちらでもいいので分かる方解答をお願いいたします。

  • 正規直交基底を持つ行列

    以下の問題についてどなたか教えていただけないでしょうか。 試しに具体的な正規直交基底の行列で計算してみたのですが、分かりませんでした。 ご回答いただけると嬉しいです。 {q_i ∈ R^n}[i=1,n]を正規直交基底とするとき、行列 A = a_1 q_1 q_1^T + a_2 q_2 q_2^T + ... + a_n q_n q_n^T, a_i ∈ R^1 について、全ての固有値と固有ベクトルを求めよ。 ("_1"は1という下付文字、"^1"は1という上付文字です。)

  • 漸化式の問題

    先日苦手な漸化式の問題が出され解いてみたのですがどうしてもうまくいきませんでした。どうしても解いてみたいので、回答と解き方を教えてください。 (問)漸化式(*) x_n+2=2x_n+1-2x_n=0 (n=1,2,…)をみたす数列    (x_n)_n=1,2,…全体のなすベクトル空間をVとする。  (1)Vの一組の基底及び次元を求めよ。  (2)α=1+i,β=1-i (i^2=-1)と置くとき、漸化式         (ⅰ) x_n+1=αx_n, (ⅱ) x_n+1=βx_n (n=1,2,…) をみたす数列(x_n)_n=1,2,…全体のなす集合をそれぞれW_1,W_2とする     と、これらは共にVの部分空間であることを示せ。  (3)漸化式(ⅰ),(ⅱ)をみたす例でない数列をそれぞれw_1,w_2とするとき、 Λ={w_1,w_2}はVの基底になることを示せ。  (4)Λに関する数列(1,1,…)∈Vの座標を求めよ。 以上です。 こんな簡単な問題も分からないのと思わず優しく教えてください。 お願いします。

  • 基底・正規直交基底に関する問題

    Aをn次実正方行列、R^nの1次変換fをf(x)=Axとする 1)V1,…,VnをR^nの基底とする   f(V1),…,f(Vn)がR^nの基底 ⇒ Aが正則行列 2)V1,…,VnをR^nの正規直交基底とする   f(V1),…,f(Vn)がR^nの正規直交基底 ⇒ (tA)A=E                        (tAはAの転置行列)  という問題です。 逆はできたんですが、こちら向きの証明ができません。 よろしくお願いします。

  • 直交補空間などについて

    どうしても分からない問題がありますのでよろしくお願いします。 もちろんどちらか片方でも構いませんので、よろしくお願いします。 行列Aがあって、Aの成分は第一行が[3/4,√6/4,1/4]第二行が[-√6/4,1/2,√6/4]第三行が[1/4,-√6/4,3/4]である。 1、Aの固有値1に対する固有空間Wの大きさ1のベクトルからなる基底を求めよ。 2、三次元ベクトル空間におけるWの直交補空間Vの正規直交基底{v1,v2}を求めよ。