• ベストアンサー

基底の変換行列

基底の変換行列 空間V(dim V=n)の2種類の正規直交基底{a_i},{b_i}(i=1,…,n)があるとき,この2種類の基底はユニタリ行列で結ばれていると思いますが,これはユニタリ行列をU,そのij成分をu_{ij}とするとき, (1) a_i=Σ_[j=1]^[n] u_{ij} b_j と書いても, (2) a_i=U b_i (i=1,…,n) と書いても同じことですか?

noname#237919
noname#237919

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.1

同じではない。 ベクトル a_i の第 k 成分を a_{ki} と書いて 列ベクトルを並べた行列 A にすると、 (1) は A = B (Uの転置) (2) は A = U B であって、それぞれの U は異なる。 A, B がユニタリ行列であることを踏まえて変形すると、 (1) の U = (Aの転置) (Bの共役) (2) の U = A (Bの転置共役) となり、どちらもユニタリ行列ではあるが。

noname#237919
質問者

お礼

回答ありがとうございます.たしかに違っていることが分かりました. 追加で質問なのですが, 正規直交基底を列ベクトルに持つ行列Aがあったとき,Aはユニタリ行列だと思いますが,(A')A=Eは簡単に示せるのですが,A(A')=Eはどのように示せばいいのでしょうか?('は転置共役) お時間があればお願いします.

その他の回答 (1)

  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.2

あれ、別の質問? 転置共役を ' で表すのはキモチワルイので、A^* と書いとく。 (A^*)A = E が簡単なのであれば、A^* = A^-1 は言えるのだから、 逆行列について一般に (A^-1)A = A(A^-1) = E であることより、 (A^*)A = A(A^*) = E。 逆行列がもとの行列と可換であることは、 A の特性多項式の定数項が det A であることにより、 det A ≠ 0 の条件下に、特性多項式を P(A)・A = A・P(A) = E ただし P は多項式 と変形できることから示せる。

noname#237919
質問者

お礼

(A^*)A=EがわかるとA(A^*)=Eもわかるのですね. どうもありがとうございます.

関連するQ&A

  • 基底の取り替え行列について

    「体K上の線型空間Vのベクトルxを、2つの基底E=<e_1,・・・,e_n>,F=<f_1,・・・,f_n>によってそれぞれx=x_1 e_1+・・・+x_n e_n =y_1 f_1+・・・+y_n f_n と表すとき、(x_i) = (p_{ij})(y_i)が成り立つ。行列P=(p_{ij})を、基底の取り替え行列という。」(斎藤正彦著「線型代数」p106)とありますが、この下に記述してある「見方を変えてf_iをe_1,・・・,e_nの線形結合として表してみると、簡単な計算によりf_i=Σ_{j=1}^{n} p_{ji}e_j (i=1,2,・・・,n)となることがわかる」の部分が、どうしてそうなるのかがわかりません。 いろいろと計算してみましたが、なかなか上手くいかず、わかられる方がおられれば、お教え頂けないでしょうか? (ただし、(x_i)は第i成分がx_iの列ベクトル、(y_i)は第i成分がy_iの列ベクトル、P=(p_{ij})はn×n行列、Σ_{j=1}^{n}はj=1からj=nまでの和(tex的には\sum{j=1}^{n})とする。)

  • 直交変換に関わる直交行列について

    直交変換についての質問なのですが、基底ベクトルを2つの座標に関してそれぞれe、およびe' で表わし、このときの直交行列を R_ij のように表わすとすれば、 e_j = R_ij e'_i e'_i = R_ij e_j がなりたちますが、見方をかえれば e_i = R_ij e'_j e'_j = R_ij e_i も成立するようなきがするのですが、実際どうなのでしょうか? もし、成立する場合は両者は同時に成り立つということはありえないと思うのですが・・・ 申し訳ありませんが、回答おねがいします。

  • 次の表現行列は(実)ユニタリである事を示せ

    VをR上の有限次元内積空間とする. [問] Rを実数体とする。VをR上の有限次元内積空間とする。 B:={v_1,v_2,…,v_n}とB':={w_1,w_2,…,w_n}を夫々,Vの正規直交基底とする。 f:V→Vを線形写像とする時, 基底BとB'に関するfの表現行列をM_B_B'(f)で表す。 (1) id:V→Vを恒等写像とすると,M_B_B'(id)は実ユニタリ(直交行列(?))であることを示せ。 [ヒント:<w_i,w_i>=1,i≠jなら<w_i,w_j>=0.また表現w_i=Σa_ijv_j (a_ij∈R)] (2) f:V→Vをf(v_i)=w_i (i=1,2,…,n)とすると,M_B_B'(f)はユニタリであることを示せ。 と言う問題です。 これらはどのようにして求めればいいのでしょうか? (1)については 表現行列の定義から x=Σa_iv_i (a_1,a_2,…,a_n∈R)とするとM_B_B'(id)(x)=M_B_B'(x) (∵恒等写像の定義) =Σ[i=1..n]c_iw_i (但し,c_1,c_2,…,c_n∈R) と書け、 ユニタリの定義から内積が保存される事,つまり <M_B_B'(id)(x),M_B_B'(id)(y)>=<x,y>を示せばいいのだと思います。 y=Σb_iv_i (b_1,b_2,…,b_n∈R)として, M_B_B'(id)(y)=Σ[i=1..n]d_iw_i (但し, d_1,d_2,…,d_n∈R) とすると <M_B_B'(id)(x),M_B_B'(id)(y)>=<Σ[i=1..n]c_iw_i,Σ[i=1..n]d_iw_i> =Σ[i=1..n]<c_iw_i,d_iw_i> (∵直交の定義) =Σ[i=1..n]c_id_i (∵正規の定義) となり,<x,y>から遠ざかっております。 どのようにして証明すればいいのでしょうか? (2)についてはユニタリの定義はノルムを保存する事 <M_B_B'(f)(x),M_B_B'(f)(x)>=<x,x> を示す事だと思います。 M_B_B'(f)(x)=M_B_B'(f)(Σa_iv_i)=M_B_B'(f(Σa_iv_i)=Σ[i=1..n]a'_iw_i M_B_B'(f)(y)=M_B_B'(f)(Σb_iv_i)=M_B_B'(f(Σb_iv_i)=Σ[i=1..n]b'_iw_i となり,=<x,x>にたどり着けません。どうすればいいのでしょうか?

  • 線型空間 基底の証明

    U, V, U @ V 線型空間 f : U × V → U @ V 双線型写像 (U @ V, f) U と V のテンソル積 f(u, v) = u @ v dim U = m, 基底 {u_1, u_2, ..., u_m} dim V = n, 基底 {v_1, v_2, ..., v_n} S = {u_i @ v_j | 1 ≦ i ≦ m, 1 ≦ j ≦ n} 基底を証明したい <S> = U @ V は f(u, v) を計算して証明できたのですが S が線型独立の証明を教えてください r_11(u_1 @ v_1) + ... + r_mn(u_m @ v_n) = 0 とおいたまま立ち往生です

  • 正規直交基底を持つ行列

    以下の問題についてどなたか教えていただけないでしょうか。 試しに具体的な正規直交基底の行列で計算してみたのですが、分かりませんでした。 ご回答いただけると嬉しいです。 {q_i ∈ R^n}[i=1,n]を正規直交基底とするとき、行列 A = a_1 q_1 q_1^T + a_2 q_2 q_2^T + ... + a_n q_n q_n^T, a_i ∈ R^1 について、全ての固有値と固有ベクトルを求めよ。 ("_1"は1という下付文字、"^1"は1という上付文字です。)

  • 正規変換に関する質問です

    2次元ユニタリ空間Vの正規変換をTとする。 このとき、次のようなVの部分空間のW_0,W_1,W_2が存在する。 (1)W_1,W_2はともにT-不変 (2){0}=W_0⊂W_1⊂W_2=V (3)dim(W_1)=1 dim(W_2)=2 このとき・・・ W_1は(計量空間)W_2の部分空間であるからW_1^⊥をW_1の直交補空間とすると W_2=W_1◎W_1^⊥(直和)となる・・・(※) W_2の任意の元をu[2]とすると、u[1]∈W_1 u[1']∈W_1^⊥を用いて u[2]=u[1]+u[1']と一意的に表せる。 このとき T(u[1'])=T(u[2])-T(u[1]) 今、W_1,W_2はともにT-不変であるから T(u[2])∈W_2 T(u[1])∈W_1となる。ここで再び(※)より T(u[2])-T(u[1])=αu[1']と一意的に表せる(αは定数) つまりT(u[1'])=αu[1']⊂W_1^⊥ とできたわけだが、u[1']は任意にとれるので これは結局、T(W_1^⊥)⊂W_1^⊥ つまりW_1^⊥がT-不変であるということである。 さて・・・ W_1の元のうち、ノルムが1となるものx[1]をとる。 さらに、W_2の元でW_1の任意の元と直交するもの全体 つまりW_1^⊥の元のうち、ノルムが1となるものx[2]をとる。 すると<x[1],x[2]>はW_2(V)の正規直交基底である。 また、W_1とW_1^⊥はともにT-不変であるから 今、W_1とW_1^⊥の次元がともに1であることを考慮して T(x[1])=αx[1] T[x[2]]=βx[2]なる数αβが存在するといえる。 よって、x[1]x[2]はTの固有ベクトルであるともいえる。 私は、一般にn次元のユニタリ空間Vの正規変換Tの固有ベクトルのみからなるVの正規直交基底がいつでもとれることを示そうと思い、まず一番簡単なn=2の場合について、上記のように考えたのですが、あっているでしょうか? 私は、一般のn次元ユニタリ空間の場合にも下記の定理 [定理] n次元ユニタリ空間Vの正規変換をTとする。 このとき、次のようなVの部分空間のW_0,W_1,・・・W_nが存在する。 (1)W_iはともにT-不変(i=1,2,・・・n) (2){0}=W_0⊂W_1⊂・・・W_n-1⊂W_n=V (3)dim(W_i)=dim(W_i-1)+1 (i=1,2,・・・n) を使って同じような操作を続けて、最終的にはn個の固有ベクトルからなるVの正規直交基底が得られるんだと思っているのですが・・。 どなたか添削よろしくお願いいたししますm(_ _)m

  • 線型代数 部分空間 次元 基底

    線型代数の問題です。 全然手がつけられないので助けてほしいです(^^;) 次のV=Mn,n(R)の部分空間の次元と基底を求めよ。 (1)W1={A=(aij)∈V|i>jのときaij=0}(上半三角行列の全体) (2)W2={A∈V|tA=A} (対称行列の全体) (3)W3={A∈V|tA=-A}(交代行列の全体) (4)W1∩W2,W1+W2 (5)W2∩W3,W2+W3 答えは (1){Eij|i<j}が基底 dimW1=1/2(n^2+n) (2){Eij+Eji|i≦j}が基底 dimW2=1/2(n^2+n) (3){Eij-Eji|i<j}が基底 dimW3=1/2(n^2-n) (4)(5)は書いてないので分からなかったです... お願いします!!

  • 直交行列について

    A~A=AA~=Iを満たすAは直交行列(~は転置 n次元の正規直交基底をn個並べたものは直交行列 とあります 正規直交基底a1,a2,,,,anを並べた行列をAとすると A~Aは各ベクトルの内積を考えることになって ノルムは1 直交するから0→単位行列だってのはわかりますが AA~は内積を考えてるわけではないです でも計算してみると内積っぽい形をしているわけで y1をa1,a2,a3...anの第一成分を並べたベクトル ynをa1,a2,a3...anの第n成分を並べたベクトル と見れば AA~はyi(i=1,2,3...n) の各内積を考えることになり これも単位行列になるんだから結局yiも正規直交基底になっています これはなんでですか? A~A=AA~=Iだからで片付けられるとなんだか面白くないので 他に証明のやりかたあったら教えてください

  • ユニタリ行列

    ユニタリ行列 ユニタリ行列の定義に関して質問です.線形代数の本を読むと,ユニタリ行列の定義は  UU^*=I(単位行列)     (1) を満たす行列Uである,というようなことを書いてあります.ところが,本によっては  UU^*=U^*U=I         (2) というように  U^*U=I           (3) という記述が追加されている場合があります,これは (a)定義としては(1)だけで十分だが,(1)を満たすUは(3)も満たすので,まとめて(2)のように書いてある (b)(1)と(3)の両方を満たすUがユニタリ行列である のどちらでしょうか?(a)である場合,(1)か(3)のどちらかを定義として採用すればいいということになると思いますが,その場合一方から他方を導くやり方を教えていただきたいです. よろしくおねがいします.

  • 線形の証明問題を教えてください

    線形代数の証明問題を教えてください 1、m×n行列全体のつくるベクトルの空間Vにおいて、(i.j)成分が1で他の成分がすべて0であるm×n行列をEijとすると、 Eij(i=1,2・・・、m ;j=1,2・・・n)はVの基底である事を示せ。 2、Vを有限次元ベクトル空間、U、WをVの部分空間とするとき dim(U+W)+dim(U∩W)=dimU+dimW であることを示せ。 (dim(U∩W)=r ,dimU=s ,dimW=tとする。a1,・・・,arをU∩Wの基底とし、これを拡張して得られるUの基底を a1,・・・,ar, b1・・・,bs-r, Wの基底をa1,・・・,ar ,c1・・・,ct-rとする。 a1,・・・,ar, b1・・・,bs-r, c1・・・,ct-r がU+Wの基底になることを示す。) この2問がどうしても証明できません。どちらでもいいので分かる方解答をお願いいたします。