• ベストアンサー

二次関数(;_;)

二次関数y=x^2-4mx+m^2-2m+1 最小値をmで表すと,-3m^2-2m+1(x=2mのとき)になります。 問題:mが変化するとき,↑の最小値を最大にする mの値を求めよ。 答えはm=-1/3なんですが, 考えても自分で答えをだせません(>_<) 求め方を教えてください!

質問者が選んだベストアンサー

  • ベストアンサー
  • owata-www
  • ベストアンサー率33% (645/1954)
回答No.1

y=x^2-4mx+m^2-2m+1 =(x-2m)^2-3m^2-2m+1 ですから合ってますね -3m^2-2m+1の最大値を求めるんですから -3m^2-2m+1=-3*(m+1/3)^2+2/3 となりますこの二次関数は上に凸になるので、最大値はどうなるかおわかりになりますね

ran_020
質問者

お礼

-3m^2-2m+1の最大値を求めれば いいんですね! 解けました(゜O゜) ありがとうございました!

関連するQ&A

専門家に質問してみよう