• 締切済み
  • 暇なときにでも

数学でいう「証明」と論理学でいう「証明」は異なるものでしょうか?

数学で使われる「証明」という言葉と論理学で使われる「証明」という言葉は意味が異なるものであると思うのですが,間違いでしょうか? 公理系で挙げられる代表的な恒真式と推論規則に基づいて,別の恒真式を導くことが論理学でいう「証明」ですよね? そして論理学的な「証明」によって得られるものは恒真式(定理)だと思います.恒真式とは情報の価値としてはゼロ(自明)です. これに対して,数学で「証明」されるものは恒真式ではないですよね?数学における「証明」とは論理学における「演繹」に相当すると思うのですが,この考えも間違いでしょうか? ご教授お願いします.

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.2
  • rinkun
  • ベストアンサー率44% (706/1571)

論理学は命題論理で、数学は述語論理という違いかな。 論理学でも数学でも証明の対象となる定理は論理式(閉論理式)で、公理(真であると定めた論理式)から推論規則による演繹により論理式が恒真式であることを示すという点では違いはないと思うけど。

共感・感謝の気持ちを伝えよう!

  • 回答No.1

哲学カテゴリーのほうでの御質問は閉められましたね。 御返事を拝見しましたら、ちょっとまだ引っ掛かるな~?と感じまして再度お相手させていただこうと思っていたのですが間に合いませんでした。 私は数学が大の苦手ですし「論理学」のことも知りませんから、今度こそ専門的な知識のあるかたに登場していただけたら良いのですが 一応、いま御質問で挙げられているところまでは御自身で辿り着かれたうえでの疑問点だと理解して、続けさせていただきますね。 哲カテのほうでの御返事で >つまり数学でいう「証明」は論理学でいう「演繹(より正確に言えば,数学でいう「公理」からの演繹)」ということでしょうか. これは、そうだと思います。前回の哲カテ投稿分をもっと整理します。ですので以下は部分的に繰り返しになります。 辞書によれば「証明」とは論理学においても数学においても 真と認める(ことにしようよ、という)命題(公理)から、ある命題が正しいことを論理的に導くこと。 特に数学では「公理」(仮定や前提)から(三段論法に代表される)演繹法を使って「定理」を導くこと。 「公理」から「演繹」(演繹によって導き出されるということは、前提を認めるならば絶対的、必然的に正しいということ)によって論理的に「定理」(という要するにトートロジー)を導く。 公理系から推論規則(論理式から他の論理式を導く規則のこと)を用いて「定理」を導く過程、これが数学での「証明」である。 数学的知識「体系」とは 「恒真式」の集まりに推論規則を適用して別の新しい「恒真式」をつくり出したもの。 出発点となる恒真式の「公理」と、公理系と推論規則から導出された恒真式である「定理」の全体で一つの理論を構成するもの。 ですから、 >公理系で挙げられる代表的な恒真式と推論規則に基づいて,別の恒真式を導くことが論理学でいう「証明」ですよね? これは「論理学で」というよりも「数学でいう」ことで >・数学では「公理,定理」は非恒真式で「証明」は非恒真式の列. >・論理学では「公理,定理」は恒真式で「証明」は恒真式の列. というのは違いますでしょう。 「論理学」とは 厳密な論理とくに推論を扱い 「~でない」(否定)「~か、または」(選言)「~であり、または」(連言)「~は、みな」(総括)及び「~である」などの、ことばの単純な使用ルールを定めたものである。 そして「記号論理学」または「数理論理学」とは 命題・概念・推論などを、その要素と関係に還元して記号で表記し、論理展開を数学的演算の形で明らかにする、哲学・数学などに応用される論理学の一分野であり、論理学を<より厳密化>したもの。 数学の証明問題というのは「数学基礎論」というものに関わり、「記号論理学」が用いられる。                    

共感・感謝の気持ちを伝えよう!

質問者からのお礼

真意を汲んで下さりありがとうございます. >辞書によれば「証明」とは論理学においても数学においても >真と認める(ことにしようよ、という)命題(公理)から、ある命題が正しいことを論理的に導くこと。 論理学の「公理」は恒真式(A∨¬Aのような命題)で,これは真であることがAの内容によらず決定する命題であると思います.これに対して,数学の「公理」は非恒真式(Aのような命題)で,真偽は内容によって決まる命題(当然それは問われませんが.)であると思います.そういう意味で上記の記述は数学的な視点からの記述のように思います.上記の書き方に倣うとき,論理学的な「証明」とは「内容に依らず真である命題(恒真式)から内容に依らず真である命題(恒真式)を論理的に導くこと」ではないでしょうか. >数学的知識「体系」とは >「恒真式」の集まりに推論規則を適用して別の新しい「恒真式」をつくり出したもの。 こちらに関しましても上記に関連するように思います.つまり上記の「恒真式」は2つとも「非恒真式」になるのが正しいのではと思います.なぜなら恒真式から恒真式を導くとは例えば,A∨¬AからA∨¬A∨Bを導くことであり,得られたものはいわばあたりまえだと思うからです. 雑なお礼になってしまいまして申し訳ありません. 大変貴重なご意見感謝いたします.

関連するQ&A

  • 数学でいう「証明」と論理学でいう「証明」は異なるもの?

    数学で使われる「証明」という言葉と論理学で使われる「証明」という言葉は意味が異なるものであると思うのですが,間違いでしょうか? 公理系で挙げられる代表的な恒真式と推論規則に基づいて,別の恒真式を導くことが論理学でいう「証明」ですよね? そして論理学的な「証明」によって得られるものは恒真式(定理)だと思います.恒真式とは情報の価値としてはゼロ(自明)です. これに対して,数学で「証明」されるものは恒真式ではないですよね?数学における「証明」とは論理学における「演繹」に相当すると思うのですが,この考えも間違いでしょうか? ご教授お願いします.

  • ゲーデルの証明不能命題

     不完全性定理(形式的体系においてその公理と推論規則を使って証明も否定もできない論理式Aが存在する。)にいう論理式Aには例えばどんなものがあるのでしょうか?  いまだ解かれていない数学上の難問がありますが、これらが論理式Aであるかどうかは、結局のところ証明できた時点でしか判定できないのでしょうか。

  • 論理学と数学(とくに高校数学)

    論理学に関する質問です。 高校数学では 公理・定義→定理→問題を解く という構図が考えられると思います。また、最初に選ぶ公理系しだいでいろいろな体系ができるのではと思っています。 A1. ここで論理学における規則はどこに関わってきますか。 A2. 「A⇒B」という命題はAもBも真ならば、命題も真なはずです。「1=1⇒素数は無限に存在する」という命題は数学的には真なはずですが、まったく証明では使えない。ならば論理学だけでは数学上の証明にとって不十分ではないですか。また不十分ならば数学と論理学はどのようにこの問題を回避しているのですか。 数学(高校数学)を勉強しているのですが、前から数学と論理学は密接に関係があると思ってきました。しかし、高校生で、論理学については学ぶ機会がありません。できれば僕の論理学に対する無知も考慮に入れて上記の2問にお答えいただけると幸いです。

  • ゲーデルの不完全性定理で出てくる「証明できない」

    ゲーデルの不完全性定理の証明に関する本をいろいろ読んでみましたが(あまり厳密なものは読んでいませんが)、どの本を読んでいても理解が先に進まず立ち止まってしまうところがありました。それは、「証明できない」ということの定式化(言葉がこれで正しいのかわかりませんが)についてです。 ある論理式が「証明できる」というのは、使用できる「公理」と「変形規則(推論というのでしょうか、これも言葉が正確かすみません覚えていません)」を有限回使用してその論理式に実際に到達できること、という理解をしており、これは理解できます。 これに対してある論理式が「証明できない」というのは、以下の(A)(B)(C)のどの意味なのでしょうか。 (A)使用できる「公理」と「変形規則」を有限回使用してもその論理式に実際に到達できない、ということ。 (B)その論理式の否定が証明できる、ということ。 (C)その論理式が証明できない、ということを示す何らかの論理式に、使用できる「公理」を「変形規則」を有限回使用して実際に到達すること。 (A)かなとも思いますが、それってどのように理解すればよいのでしょうか。1000回使用して到達できなくても、1001回使用すれば到達できるかも知れないのでは?  (B)ではないと思っていますが自信がありません。 (C)は実際には(A)だったり(B)だったりする?。。判断ができません。 昔の一時期、結構悩みました。現在再チャレンジしていており同じ個所で悩んでいます。もやもやを晴らして頂ければ大変うれしいです。

  • 命題計算の或る形式的体系に関して

    こんばんは。いま私は、松本和夫著「数理論理学」(共立出版)を勉強しているのですが、その中で理解出来ない部分があったので、質問させてください。 この本の中で、以下の様な諸公理と推論規則MPを定めて、そこで証明可能な論理式が全てトートロジーとなるような無矛盾な命題計算の体系Hpを作るところがあります。 A、B、Cを論理式、⇒を含意として          公理1 A⇒(B⇒A)     公理2 (A⇒(B⇒C))⇒((A⇒B)⇒(A⇒C))                                                                            公理3 (¬B⇒¬A)⇒((¬B⇒A)⇒B)                                                                                                 推論規則MP A、A⇒B |-B これ等の公理と推論規則から導かれる形式的体系Hpでは演繹定理も成り立ちます。                                                                        さて本題の質問です。本書では、無矛盾な体系Hpに於いて証明可能な論理式の一つとして次のものが挙げられています。                                            定理 ¬A⇒(A⇒B)                                                                                             証明  (1)¬A 仮定 (2)A 仮定 (3)A⇒(¬B⇒A)公理1 (4) ¬A⇒(¬B⇒¬A)公理1   (5)¬B⇒A (2)と(3)にMP (6)¬B⇒¬A (1)と(4)にMP (7)(¬B⇒¬A)⇒((¬B⇒A)                                                  ⇒B)公理3  (8)(¬B⇒A)⇒B (6)(7)にMP (9)B (5)と(8)にMP                                                                                            故に ¬A、A|-B  これに演繹定理を2回用いて上の定理を得る。 qed                                                                     私が納得出来ないのはこの証明なのですが、最初に¬AとAが同時に成り立つと仮定していますよね。ですがHpは無矛盾なのだから、Hpにおいて¬AとAとが共に成立することなどあり得ない筈です。よってこの証明は無意味だと思うのですが、どうでしょうか?  随分ごたごたした記述で申し訳ありませんが、何卒ご回答お願いします。

  • 数学は正しい?

    公理っていうのは、数学のいろいろな定理を支える 真理みたいなものとしてあつかわれていますが、 たとえばその「公理」自体を証明することはできるのでしょうか。 「自明」であるとしてだれも証明したことはないのでしょうか。 その真理性みたいなものを疑った人はいないのでしょうか。 「ある原理A」みたいなものから、すべての数学の体系は導出できる というわけでしょうか? とすればその「原理A」とはどのようなものなんでしょうか? そのA自体を疑うことは、その行為自体可能でしょうか?

  • 論理学とは?論理とは?

    29歳勤務医です。 基本的な推論の体力や根気はあるので、ちゃんと読みますからできるだけ詳しく教えて下さい。 1。論理学の目標は何でしょうか? ~~学というのは例えば 医学であれば、ヒトの生物学的な知識、叉その人体への応用とか 数学であれば数や図形に関して正しい規則の発見と証明とか。 こんな様に実際的な目標や手段がはっきり分かれば良いのですが、論理学って一体何を目標として、何を手段としているのでしょうか? 2。また、他の学問が論理的なのは良いのです。論理的とは論理学において正しいということですよね。論理学は論理的に話をする前に「論理」の正しさはどういうように扱っているのでしょうか?論理とは何なのでしょうか。 直感的に正しいものが論理なのですか?論理は受け入れるしかないのでしょうか? 論理的である事に基礎をおいた学問はみんな直感的にしか正しさは示されていないのでしょうか? 数学で言う定義や公理のようなものは論理学には存在するのでしょうか?もしあるのなら知りたいです。 三段論法とかは証明できるのでしょうか。 自分で証明しようとしても当たり前すぎて出来ません。 3。教えてgooの物理の板で質問して仕入れた知識なのですが、現代物理学の最先端では同一の仮定から同一の結論が導き出せない事も有るかも知れないそうです。(具体的には全く同じ初期条件で宇宙を仮定しても時間と共に違う結果になる?そうなのです)そういう最新の科学の進歩によって古典的な論理学が退却を余儀無くされているのはホントですか? 本屋さんの論理学のコーナーの本は多くが、推論のトレーニングみたいな事をやっていて、このもやもやした気分には全然答えてくれません! 参考文献も挙げて頂ければと思います。 宜しくお願いします。

  • 推論規則と日本語による証明の対応関係

    以前、論理学の本を読み、コンピュータに軽く関わっている事もあり、数学基礎論に興味が発展しました。 推論規則などについて知る内に、高校で習った自然言語による証明との対応関係に疑問がわきました。 例えばゲッツェンの自然演繹などとどの様に対応しているのでしょうか? 論理記号で定義された、背理法や帰納法などの個々の規則は単独では納得していますが、数学の一般向けの本などに書かれている自然言語で記述された証明を見てもどうにも納得できない(論理構造を抜き出せない)事があります。 ぜひ、推論規則と日本語による証明の関係性を教えていただきたいのです。 何かいい本や、WEBサイト等ありましたら是非教えてください。

  • 命題論理の定理の証明

    論理学の有名な定理? A→C,B→C,ならばAvB→C というのがありますが http://en.wikipedia.org/wiki/Disjunction_elimination AvB=(¬A)→B それは 命題論理の公理系 1) φ → (χ → φ) 2) (φ → (χ → ψ)) → ((φ → χ) → (φ → ψ)) 3) (¬ψ → ¬φ)→(φ → ψ) あとモーダスポネンスを使って証明出来るんでしょうか? よろしくお願いします

  • 論理式

    (P ∧ ¬Q)→P (1) 上の論理式が恒真か否か示せ。 (2) 上の論理式が証明可能か否か示せ。 (1)(2)どちらかでも分かる方がいらっしゃいましたら 教えていただきたいです