• 締切済み
  • すぐに回答を!

論理学と数学(とくに高校数学)

論理学に関する質問です。 高校数学では 公理・定義→定理→問題を解く という構図が考えられると思います。また、最初に選ぶ公理系しだいでいろいろな体系ができるのではと思っています。 A1. ここで論理学における規則はどこに関わってきますか。 A2. 「A⇒B」という命題はAもBも真ならば、命題も真なはずです。「1=1⇒素数は無限に存在する」という命題は数学的には真なはずですが、まったく証明では使えない。ならば論理学だけでは数学上の証明にとって不十分ではないですか。また不十分ならば数学と論理学はどのようにこの問題を回避しているのですか。 数学(高校数学)を勉強しているのですが、前から数学と論理学は密接に関係があると思ってきました。しかし、高校生で、論理学については学ぶ機会がありません。できれば僕の論理学に対する無知も考慮に入れて上記の2問にお答えいただけると幸いです。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.3
  • at9_am
  • ベストアンサー率40% (1540/3760)

1. #1で回答が出ているとおり、  公理・定義→定理 で用いられています。 2. > 「A⇒B」という命題はAもBも真ならば、命題も真なはず 間違いです。 A も B も真であるにもかかわらず、命題「A→B」は偽となるものもあります。たとえば A:1+1=2 B:三角形の内角の和は180度である 命題はA、B共に真です。が、A であるから B が成り立つといえるでしょうか。命題Aと、命題Aの属する公理系を元に、Bが成り立つと証明できなければ(出来るような気がしないでもないが)この関係は成り立ちません。 この例の場合は、新たな公理系(二次元の平面幾何学)を追加しなければなりませんので、命題「A→B」は成り立ちません。 論理学的には厳密にどうかはわかりかねますが、数学に関係した部分から言うとそのようになっています。

共感・感謝の気持ちを伝えよう!

  • 回答No.2

>「1=1⇒素数は無限に存在する」という命題は数学的には真な >はずですが、... 「はず」ではなくて真です。証明は小学生でもわかる簡単な背理 法でできます。 数学と論理学のちがうところは、論理学には詭弁論理学という ものが存在するのに対して数学は絶対的な真を問うことができる ということ。これはパスカルが言っていることです。

共感・感謝の気持ちを伝えよう!

  • 回答No.1
  • koko_u_
  • ベストアンサー率18% (459/2509)

>ここで論理学における規則はどこに関わってきますか。 質問の意味がよくわかりません。 公理や定義から定理を「導く」のに論理学の推論規則が使用されています。 >論理学だけでは数学上の証明にとって不十分ではないですか 数学上の証明を記述する「言語」として論理学の推論規則があると考えましょう。 三段論法などが全員のコンセンサスとして存在するということです。 また A も B も真と判っている場合は A ⇒ B という命題を新たに立てる意味は あまりありませんが、A、B の真偽は不明だが、A ⇒ B が真であると証明される 状況は頻繁に存在します。 後になって A が真であることが証明されれば、B も真と知れるし、 更に別の命題 A' から A が導かれることが判明すると、新たな知識 A' ⇒ B を得るのです。 論理学自体は数学基礎論と呼ばれるような分野で、どのような公理系が妥当だとか 公理系の矛盾の有無など「推論規則それ自体」に対する研究を主としているので 高校生には学習する機会はないと思います。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 無意味に真な命題に関して

    数学と論理学に絡んだ質問です。 1=1⇒素数は無限に存在する という命題は 数学的に「1=1」は真、「素数は無限に存在する」は真なので命題も真になるはずです。 しかし、あるところによれば、これは「無意味に真な命題」となっていると記述されています。もちろん、この命題が数学における証明に使えないのはもちろん理解できます。 では、数学において、どのような基準で意味があるかないかを判断するのか教えて下さい。その基準に公理などが関係ある場合はとくに明記していだだければ幸いです。

  • 私が知りたいのは ゲーデルの不完全性定理の幾何学での理解です。

    私が知りたいのは ゲーデルの不完全性定理の幾何学での理解です。 (1)第2不完全性定理では 次の表現があり『公理系Nにおいて、その無矛盾性を証明することは不可能である』、そのなかで問題として『 真であるが証明不可能な主張とは何か。』に対して 答え『公理』とあり 自己言及を表現していることは 理解し易いのです。幾何学では5公理です。この理解はたぶん正しいと思います。 ところが (2)私がよく分らないのは 第1不完全性定理です。『形式的体系Sにおいて、形式的体系Sが無矛盾である限り、「形式的体系Sにおいて命題は証明可能である。」という命題も「形式的体系Sにおいて命題は証明不可能である。」という命題も証明不可能である。』 と表される(別表現もありますが)とあります。 ここで現れる命題は抽象的言語であってよく分らないのです。例えばユークリッド幾何学においてはこの具体例は何でしょうか。私の理解は 「例えば無限遠点において平行線は交わるは証明可能である」はその例のようにおむのですが。つまり 例題には ユークリッド幾何学では未定義の無限遠点が現れており 証明はできない のです。いくら公理を増やして定義を明白にしても 未定義の領域はある ということです。 もう一つの例ですが 無限遠点は扱わないという6番目の公理を追加したとしても 例えば 「X・X=-1 は根がない は証明可能である」も証明できない と思うのです。なぜなら複素数は未定義だからです。つまり 『公理で定義されても未定義域は必ずある』が第一不完全性定理の一つの別表現ではないか と思うのです。この理解が間違っているのかどうか どなたかにお教えて頂きたかったのですが 

  • ゲーデルの定理

    完全性定理では「任意のモデルで真である文はすべて1階述語論理で証明可能である」 不完全性定理では「自然数論を含む体系は無矛盾である限り、真であっても証明できない 命題が存在する」とありました。 それではこの2つの定理をペアノの公理系に当てはめると「全ての真である命題は証明可能」でありながらどこかに「真であっても証明できない命題が存在する」わけですか? 何だか矛盾するような感じがしますが、そんな訳ありませんよね。 どう考えたらよいのか教えてください。 よろしくお願いいたします。

  • 命題論理の定理の証明

    論理学の有名な定理? A→C,B→C,ならばAvB→C というのがありますが http://en.wikipedia.org/wiki/Disjunction_elimination AvB=(¬A)→B それは 命題論理の公理系 1) φ → (χ → φ) 2) (φ → (χ → ψ)) → ((φ → χ) → (φ → ψ)) 3) (¬ψ → ¬φ)→(φ → ψ) あとモーダスポネンスを使って証明出来るんでしょうか? よろしくお願いします

  • ユークリッド幾何学にまつわる不完全性定理的理解について

    ユークリッド幾何学にまつわる不完全性定理的理解について ゲーデルの不完全性定理の対象となる数学は『公理系Nが無矛盾である』が前提です。ユークリッド幾何学は 一階述語論理で表されることが出来る自然数の部分集合であって、ゲーデルの不完全性定理の対象である 公理Nの無矛盾である 論理の対象になってないとなり それ以上のユークリッド幾何学の論理的理解が進みません。そこでゲーデル理解を拡張して『公理系Nが無矛盾ではない』として不完全性定理を理解すると(須田隆良氏、中西章氏など) (1)ゲーデルの第一不完全性定理の解釈==>公理系Nが無矛盾であろうがなかろうが 公理系Nにおいて、「公理系Nにおいて命題は証明可能である。」という命題も、「公理系Nにおいて命題は証明不可能である。」という命題も証明不可能である (2)第2不完全性定理の解釈==>公理系Nが無矛盾であろうがなかろうが その無矛盾性を証明できない となります。これらはゲーデル不完全性対象から外れておりますが、対象外のユークリッド幾何学を理解するには都合がよい と思うのです。 (2)によりユークリッド幾何学の公理の無矛盾性は証明できない。 (1)によりユークリッド幾何学の未定義領域(非ユークリッド幾何学、虚数、無限遠点とか)は 公理系Nにふくまれ 多くの証明できない命題があることになります。もちろん 公理定義内では完全性理論は保証されています。 なぜ このようなユークリッド幾何学に こだわる かと申しますと 世の中の 論理(数学、哲学、論理を用いた論文 など)は ユークリッド幾何学的なものが 圧倒的に多いと思うのです。これら論文は ほとんどは一階述語理論で表され かつ ゲーデル不完全性定理 対象論理ではないのです。それら論文の特に(2)に関わる自己証明は出来ない ということは重要であると思うのです。もちろん 自己証明が出来ないと言って間違いとはなりません が 常に 冷静に謙虚に 主張理論の原点を見直すことに 繋がっていると思うのです。勿論、論理構成が出来ていないシロモノは 論外であります。    以上のように理解しているのですが、ユークリッド幾何学にまつわるゲーデル不完全性定理の場外理解は問題ないでしょうか。諸先生のコメント頂けましたら幸甚です。

  • 数学は正しい?

    公理っていうのは、数学のいろいろな定理を支える 真理みたいなものとしてあつかわれていますが、 たとえばその「公理」自体を証明することはできるのでしょうか。 「自明」であるとしてだれも証明したことはないのでしょうか。 その真理性みたいなものを疑った人はいないのでしょうか。 「ある原理A」みたいなものから、すべての数学の体系は導出できる というわけでしょうか? とすればその「原理A」とはどのようなものなんでしょうか? そのA自体を疑うことは、その行為自体可能でしょうか?

  • 私がよく分らないのは ゲーデルの第1不完全性定理です。『形式的体系Sに

    私がよく分らないのは ゲーデルの第1不完全性定理です。『形式的体系Sにおいて、形式的体系Sが無矛盾である限り、「形式的体系Sにおいて命題は証明可能である。」という命題も「形式的体系Sにおいて命題は証明不可能である。」という命題も証明不可能である。』 と表される(別表現もありますが)とあります。 ここで現れる命題は抽象的言語であってよく分らないのです。例えばユークリッド幾何学においてはこの具体例は何でしょうか。私の理解は 『例えば無限遠点において平行線は交わるは証明可能である』はその例のように思うのですが 間違っているでしょうか。 問題は 無限遠点が公理を用いて表されるか どうか という先輩のご指摘があり公理をあらためてみてみますと 公理2に線分を限りなく伸ばすことができる とあります。つまり無限遠点は「公理2の限りなく線分を伸ばした点」と理解され 公理の定義を用いることで表されるとおもうのです。間違っているでしょうか。参考までに公理を挙げておきます。 <ユークリッド 幾何学の公理> (公理1)与えられた2点に対して、それらを結ぶ線分をちょうど1つ引くことができる。 (公理2)与えられた線分は、どちらの側にも限りなく伸ばすことができる。 (公理3)平面上に2点が与えられたとき、一方を中心とし、他方を通る円をちょうど1つ書くことができる。 (公理4)直角はすべて相等しい。 (公理5(平行線公理))直線外の1点を通り、その直線に平行な直線は1本に限る

  • 数学でいう「証明」と論理学でいう「証明」は異なるものでしょうか?

    数学で使われる「証明」という言葉と論理学で使われる「証明」という言葉は意味が異なるものであると思うのですが,間違いでしょうか? 公理系で挙げられる代表的な恒真式と推論規則に基づいて,別の恒真式を導くことが論理学でいう「証明」ですよね? そして論理学的な「証明」によって得られるものは恒真式(定理)だと思います.恒真式とは情報の価値としてはゼロ(自明)です. これに対して,数学で「証明」されるものは恒真式ではないですよね?数学における「証明」とは論理学における「演繹」に相当すると思うのですが,この考えも間違いでしょうか? ご教授お願いします.

  • 数学でいう「証明」と論理学でいう「証明」は異なるもの?

    数学で使われる「証明」という言葉と論理学で使われる「証明」という言葉は意味が異なるものであると思うのですが,間違いでしょうか? 公理系で挙げられる代表的な恒真式と推論規則に基づいて,別の恒真式を導くことが論理学でいう「証明」ですよね? そして論理学的な「証明」によって得られるものは恒真式(定理)だと思います.恒真式とは情報の価値としてはゼロ(自明)です. これに対して,数学で「証明」されるものは恒真式ではないですよね?数学における「証明」とは論理学における「演繹」に相当すると思うのですが,この考えも間違いでしょうか? ご教授お願いします.

  • 命題計算の或る形式的体系に関して

    こんばんは。いま私は、松本和夫著「数理論理学」(共立出版)を勉強しているのですが、その中で理解出来ない部分があったので、質問させてください。 この本の中で、以下の様な諸公理と推論規則MPを定めて、そこで証明可能な論理式が全てトートロジーとなるような無矛盾な命題計算の体系Hpを作るところがあります。 A、B、Cを論理式、⇒を含意として          公理1 A⇒(B⇒A)     公理2 (A⇒(B⇒C))⇒((A⇒B)⇒(A⇒C))                                                                            公理3 (¬B⇒¬A)⇒((¬B⇒A)⇒B)                                                                                                 推論規則MP A、A⇒B |-B これ等の公理と推論規則から導かれる形式的体系Hpでは演繹定理も成り立ちます。                                                                        さて本題の質問です。本書では、無矛盾な体系Hpに於いて証明可能な論理式の一つとして次のものが挙げられています。                                            定理 ¬A⇒(A⇒B)                                                                                             証明  (1)¬A 仮定 (2)A 仮定 (3)A⇒(¬B⇒A)公理1 (4) ¬A⇒(¬B⇒¬A)公理1   (5)¬B⇒A (2)と(3)にMP (6)¬B⇒¬A (1)と(4)にMP (7)(¬B⇒¬A)⇒((¬B⇒A)                                                  ⇒B)公理3  (8)(¬B⇒A)⇒B (6)(7)にMP (9)B (5)と(8)にMP                                                                                            故に ¬A、A|-B  これに演繹定理を2回用いて上の定理を得る。 qed                                                                     私が納得出来ないのはこの証明なのですが、最初に¬AとAが同時に成り立つと仮定していますよね。ですがHpは無矛盾なのだから、Hpにおいて¬AとAとが共に成立することなどあり得ない筈です。よってこの証明は無意味だと思うのですが、どうでしょうか?  随分ごたごたした記述で申し訳ありませんが、何卒ご回答お願いします。