• 締切済み
  • 困ってます

ゲーデルの不完全性定理で出てくる「証明できない」

ゲーデルの不完全性定理の証明に関する本をいろいろ読んでみましたが(あまり厳密なものは読んでいませんが)、どの本を読んでいても理解が先に進まず立ち止まってしまうところがありました。それは、「証明できない」ということの定式化(言葉がこれで正しいのかわかりませんが)についてです。 ある論理式が「証明できる」というのは、使用できる「公理」と「変形規則(推論というのでしょうか、これも言葉が正確かすみません覚えていません)」を有限回使用してその論理式に実際に到達できること、という理解をしており、これは理解できます。 これに対してある論理式が「証明できない」というのは、以下の(A)(B)(C)のどの意味なのでしょうか。 (A)使用できる「公理」と「変形規則」を有限回使用してもその論理式に実際に到達できない、ということ。 (B)その論理式の否定が証明できる、ということ。 (C)その論理式が証明できない、ということを示す何らかの論理式に、使用できる「公理」を「変形規則」を有限回使用して実際に到達すること。 (A)かなとも思いますが、それってどのように理解すればよいのでしょうか。1000回使用して到達できなくても、1001回使用すれば到達できるかも知れないのでは?  (B)ではないと思っていますが自信がありません。 (C)は実際には(A)だったり(B)だったりする?。。判断ができません。 昔の一時期、結構悩みました。現在再チャレンジしていており同じ個所で悩んでいます。もやもやを晴らして頂ければ大変うれしいです。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.1
  • alice_44
  • ベストアンサー率44% (2109/4758)

「証明できない」の意味は、(A)です。 (B)は「否定が証明できる」ことを、 (C)は「証明できないことが証明できる」ことを表しており、 「証明できない」とは異なります。 ゲーデルの証明不能命題は、存在することだけは証明されていますが、 その命題が証明不能であることもまた証明不能だと判っていますから、 推論が1000回とか1001回とか悩む必要もないです。 ゲーデル文は、遠くにありて思ふもの… です。掴むことはできません。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • ゲーデルの証明不能命題

     不完全性定理(形式的体系においてその公理と推論規則を使って証明も否定もできない論理式Aが存在する。)にいう論理式Aには例えばどんなものがあるのでしょうか?  いまだ解かれていない数学上の難問がありますが、これらが論理式Aであるかどうかは、結局のところ証明できた時点でしか判定できないのでしょうか。

  • ゲーデルの不完全性定理

    ゲーデルの不完全性定理の証明のアイデアが知りたいと思い、適当な入門書(基礎論の教科書ではないです。)を読んでいるのですが、 まず、定理の主張が「形式的体系Tで通常の自然数を含み、強い意味で無矛盾であり、そこにおける公理や推論規則は帰納的に定義されているかまたはその数が有限であるようなもの、においては文GでGも¬Gも証明できないものが存在する。」 とあるのですが、形式的体系Tがなにを意味しているのかがよくわかりません。これは、形式的と書いてあるのだから文字通り「意味を考えない記号の世界(記号の集まりと、記号を並べて得られる列を変形するいくつかの規則)」と考えればよいのでしょうか? それで、もう一つ質問があるのですが、 まず、準備として記号 ¬,∧,∨,→,∃,∀,(,),0,',+,×,=,x,y,zを用意して、 x,y,zを変数記号と呼びます。 それで、項を次のように定義します。 (i) 0,x,y,zは項。 (ii) t,sが項であるとき、'(t),+(t,s),×(t,s)は項。 (iii)このようにして得られるものだけが項。 (iV)'(t),+(t,s),×(t,s)を簡単にそれぞれt',t+s,t×sと記したりする。また、0',0'',0''',…をそれぞれ1,2,3,…と記す。 また、項tを上の記号の括弧としてではなく、見易さのための補助記号としての(,)を用いることにより、しばしばt(x,y,z)と記したりする。 次に論理式を次のように定義します。 (i)t,sが項のとき、t=sは論理式。 (ii)φとψが論理式でxが変数記号のとき、(¬φ),(φ∧ψ),(φ∨ψ),(φ→ψ),(∀xφ),(∃xφ)は論理式。 (iii)このようにして得られるもののみが論理式 (iV)見易さのために括弧を適当に省略して論理式を記すこともある。 以上により、与えられた記号列が項か論理式かそれ以外のものか判定できるようになります。 準備した記号¬,∧,∨,→,∃,∀,(,),0,',+,×,=,x,y,zを普通に解釈することで、論理式の意味を考えることができるようになります。 ただし、'は後者関数と解釈します。 次に、¬,∧,∨,→,∃,∀,(,),0,',+,×,=,x,y,zに 素数2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53を割り当てます。 記号列が与えられたとき、各記号を上記の対応に従い素数n_1,n_2,n_3,…に置き換え、2^(n_1)*3^(n_2)*5^(n_3)*…を対応させます。対応する数をゲーデル数と呼びます。 以上で準備は終わりで、 質問ができるのですが、 「mがTのある論理式のゲーデル数である」という非形式的な主張は mを素因数分解して各素数の指数を調べることである論理式のゲーデル数であるかどうかがチェックできるので、解釈すると「mがTのある論理式のゲーデル数である」という意味になる論理式が作れる、とあるのですが"具体的"にはどのようにして作るのでしょうか? 私は、論理式の定義が再起的であるから、「mがTのある論理式のゲーデル数であるかどうか」をコンピュータに判定させること(とてつもなく時間がかかりそうですが)可能だと思うので上のような論理式は作れると思うのですが、実際に作るとどんな論理式になるのか興味があります。

  • 命題論理の定理の証明

    論理学の有名な定理? A→C,B→C,ならばAvB→C というのがありますが http://en.wikipedia.org/wiki/Disjunction_elimination AvB=(¬A)→B それは 命題論理の公理系 1) φ → (χ → φ) 2) (φ → (χ → ψ)) → ((φ → χ) → (φ → ψ)) 3) (¬ψ → ¬φ)→(φ → ψ) あとモーダスポネンスを使って証明出来るんでしょうか? よろしくお願いします

  • 命題計算の或る形式的体系に関して

    こんばんは。いま私は、松本和夫著「数理論理学」(共立出版)を勉強しているのですが、その中で理解出来ない部分があったので、質問させてください。 この本の中で、以下の様な諸公理と推論規則MPを定めて、そこで証明可能な論理式が全てトートロジーとなるような無矛盾な命題計算の体系Hpを作るところがあります。 A、B、Cを論理式、⇒を含意として          公理1 A⇒(B⇒A)     公理2 (A⇒(B⇒C))⇒((A⇒B)⇒(A⇒C))                                                                            公理3 (¬B⇒¬A)⇒((¬B⇒A)⇒B)                                                                                                 推論規則MP A、A⇒B |-B これ等の公理と推論規則から導かれる形式的体系Hpでは演繹定理も成り立ちます。                                                                        さて本題の質問です。本書では、無矛盾な体系Hpに於いて証明可能な論理式の一つとして次のものが挙げられています。                                            定理 ¬A⇒(A⇒B)                                                                                             証明  (1)¬A 仮定 (2)A 仮定 (3)A⇒(¬B⇒A)公理1 (4) ¬A⇒(¬B⇒¬A)公理1   (5)¬B⇒A (2)と(3)にMP (6)¬B⇒¬A (1)と(4)にMP (7)(¬B⇒¬A)⇒((¬B⇒A)                                                  ⇒B)公理3  (8)(¬B⇒A)⇒B (6)(7)にMP (9)B (5)と(8)にMP                                                                                            故に ¬A、A|-B  これに演繹定理を2回用いて上の定理を得る。 qed                                                                     私が納得出来ないのはこの証明なのですが、最初に¬AとAが同時に成り立つと仮定していますよね。ですがHpは無矛盾なのだから、Hpにおいて¬AとAとが共に成立することなどあり得ない筈です。よってこの証明は無意味だと思うのですが、どうでしょうか?  随分ごたごたした記述で申し訳ありませんが、何卒ご回答お願いします。

  • 数学でいう「証明」と論理学でいう「証明」は異なるものでしょうか?

    数学で使われる「証明」という言葉と論理学で使われる「証明」という言葉は意味が異なるものであると思うのですが,間違いでしょうか? 公理系で挙げられる代表的な恒真式と推論規則に基づいて,別の恒真式を導くことが論理学でいう「証明」ですよね? そして論理学的な「証明」によって得られるものは恒真式(定理)だと思います.恒真式とは情報の価値としてはゼロ(自明)です. これに対して,数学で「証明」されるものは恒真式ではないですよね?数学における「証明」とは論理学における「演繹」に相当すると思うのですが,この考えも間違いでしょうか? ご教授お願いします.

  • 数学でいう「証明」と論理学でいう「証明」は異なるもの?

    数学で使われる「証明」という言葉と論理学で使われる「証明」という言葉は意味が異なるものであると思うのですが,間違いでしょうか? 公理系で挙げられる代表的な恒真式と推論規則に基づいて,別の恒真式を導くことが論理学でいう「証明」ですよね? そして論理学的な「証明」によって得られるものは恒真式(定理)だと思います.恒真式とは情報の価値としてはゼロ(自明)です. これに対して,数学で「証明」されるものは恒真式ではないですよね?数学における「証明」とは論理学における「演繹」に相当すると思うのですが,この考えも間違いでしょうか? ご教授お願いします.

  • ゲーデルの不完全性定理とは?

    入門書を読んで理解を深めてから質問しようと思っていたのですが、なにぶん多忙かつ 魯鈍であるため、ほとんど理解していない状態での質問をお許しください。 ゲーデルの不完全性定理の入門書を読むと、一般人向けの説明として次のように記述されて います。 ●自然数論を含むような数学的体系の無矛盾性を、その体系内で証明することはできない。 これは、分かりやすいく言うとどういうことなのでしょうか。論理記号式を使用しないと 説明は無理ですか。 不完全性定理は「自己参照」とか「自己言及」を行なった際に生じる、避けられない 困難性や矛盾の存在を言い表しているのだと思いますが、次のような(安直とも言える) 拡大解釈を許すような、普遍性のある定理なのでしょうか。 ●認識主体が自分自身を完全に認識することはできない。(認識) ●哲学が哲学を完全に定義することはできない。(定義) ●体制が自己の正当性を自分で証明することはできない。(証明)

  • 命題論理の証明問題

    命題論理の証明問題です 公理はヒルベルト流で p→(q→p) (p→(q→r))→((p→q)→(p→r)) (¬q→¬p)→((¬q→p)→q) 推論規則はMPです (A→B)→((C→D)→((¬A→C)→(¬B→¬¬D))) を証明したいのですがよくわかりませんでした どなたか教えていただけないでしょうか

  • 数学の証明

    1、a,bが実数のときa>bならばa-b>0である。逆も正しい 2、a>b,c<0ならばac<bcである。 の2問についてですが、証明したいことの意味はわかるのですがどのようにアプローチをすればいいかわかりません。 また、これを証明するにあたって公理が4つほどかかわってくるらしいのですが、 どのような公理でしょうか?

  • ユークリッド幾何学にまつわる不完全性定理的理解について

    ユークリッド幾何学にまつわる不完全性定理的理解について ゲーデルの不完全性定理の対象となる数学は『公理系Nが無矛盾である』が前提です。ユークリッド幾何学は 一階述語論理で表されることが出来る自然数の部分集合であって、ゲーデルの不完全性定理の対象である 公理Nの無矛盾である 論理の対象になってないとなり それ以上のユークリッド幾何学の論理的理解が進みません。そこでゲーデル理解を拡張して『公理系Nが無矛盾ではない』として不完全性定理を理解すると(須田隆良氏、中西章氏など) (1)ゲーデルの第一不完全性定理の解釈==>公理系Nが無矛盾であろうがなかろうが 公理系Nにおいて、「公理系Nにおいて命題は証明可能である。」という命題も、「公理系Nにおいて命題は証明不可能である。」という命題も証明不可能である (2)第2不完全性定理の解釈==>公理系Nが無矛盾であろうがなかろうが その無矛盾性を証明できない となります。これらはゲーデル不完全性対象から外れておりますが、対象外のユークリッド幾何学を理解するには都合がよい と思うのです。 (2)によりユークリッド幾何学の公理の無矛盾性は証明できない。 (1)によりユークリッド幾何学の未定義領域(非ユークリッド幾何学、虚数、無限遠点とか)は 公理系Nにふくまれ 多くの証明できない命題があることになります。もちろん 公理定義内では完全性理論は保証されています。 なぜ このようなユークリッド幾何学に こだわる かと申しますと 世の中の 論理(数学、哲学、論理を用いた論文 など)は ユークリッド幾何学的なものが 圧倒的に多いと思うのです。これら論文は ほとんどは一階述語理論で表され かつ ゲーデル不完全性定理 対象論理ではないのです。それら論文の特に(2)に関わる自己証明は出来ない ということは重要であると思うのです。もちろん 自己証明が出来ないと言って間違いとはなりません が 常に 冷静に謙虚に 主張理論の原点を見直すことに 繋がっていると思うのです。勿論、論理構成が出来ていないシロモノは 論外であります。    以上のように理解しているのですが、ユークリッド幾何学にまつわるゲーデル不完全性定理の場外理解は問題ないでしょうか。諸先生のコメント頂けましたら幸甚です。