• 締切済み
  • 困ってます

行列の問題です、よろしくお願いします。

A=(a b ; c d) (←2次の正方行列をこのように表すとします) (1)行列Aが固有値λ1、λ2 (λ1≠0、λ2≠0)を持つとするとき、ケーリー・ハミルトンの式を用いて、 tr(A)=λ1+λ2、 det(A)=λ1・λ2 となることを示せ。 (λ1の"1"などはλの添え字だとします) (2)上記の条件の下で、(λ1-λ2)・A^n=((λ1)^n-(λ2)^n)・A-((λ1)^n・λ2-λ1・(λ2)^n)・E が成り立つことを示せ。ただしnは正の整数とする。 ( "^n" はn乗を、"E"は単位行列を表しています) という問題がよくわかりません。 (1)は、僕なりの解としては、ケーリー・ハミルトンを用いなければ A-λE=(a-λ b ; c d-λ) det(A-λE)=(a-λ)(d-λ)-bc =λ^2-(a+d)λ+ad-bc=0 この方程式の2解はλ1、λ2なので、解と係数の関係より λ1+λ2=a+d=tr(B) λ1・λ2=ad-bc=det(B) としましたが、ケーリー・ハミルトンを用いるとどのようになるのでしょうか? (2)は、全然方針が思い浮かびません…どのように解くのでしょうか?よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数97
  • ありがとう数1

みんなの回答

  • 回答No.1

(2)の解き方はきっと数学的帰納法って言うのを使うんです.. ケーリーハミルトンの式はn=2にしたものと一致しますよね. (A^2) - Tr[A] * A + det[A] * E =0 (ケーリーハミルトン) あとは、n=kで成り立つと仮定してn=k+1で成り立つ事を示せばよいのです.(このときケーリーハミルトンまた使うと早いです.) (1)の理想的な回答はちょっと思いつきませんでしたよ.

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 行列の問題

    2次の正方行列A,Bが AB-BA=Aをみたすとき、detAを求めよ。 についてですが、 trA=tr(AB-BA)=trAB-BA=Oで、 ハミルトンケーリーの定理より A²-trA・A+detA・E=0 ∴A²=-detA・E A=(a b) とおいて、 (c d) 係数比較すると、 a+d=0 となり、ここまではできたのですが、 これ以降が進めません。 ご指導よろしくお願いします。

  • AはC上のn次正方行列のとき。

    『AはC上のn次正方行列.E_nはn次単位行列,b∈Cとするとき、 1:bはAの固有値である。 2:det(bE_n-A)=0 の二つが同値を示せ』 という問題で、 i)1→2のとき Aの固有ベクトルをxと置く、 Ax=bx E_nはn次単位行列だから AE_n=A AE_nx=Ax=bx Ax=bE_nx A=bE_n このとき次数も等しいから det(bE_n-A)=0. ii)行列(bE_n-A)の次数は0より bE_n-A=0 bE_n=A E_nはn次単位行列 Aはn次正方行列 だから bはAの固有値. この2つから題意は示せますか?

  • 高校数学:ケーリー・ハミルトンの式

    高校の教科書に、 ケーリー・ハミルトンの式は、 行列Aの固有値を求める為の固有方程式、 K^2-(a+d)K+ad-bc=0(Kは実数)が成り立つ時、 Kを行列Aに、ad-bcを(ad-bc)E、0をOに置き換えたらケーリー・ハミルトンの方程式導かれる。(A、E、Oはすべて2×2行列。Eは単位行列。Oは零行列) と書いてあるのですが、ここで、実数と行列は別物のはずなのに、実数を行列に置き換えてよいのはなぜなのでしょうか…? ふと疑問に思いました。 分かりやすく教えて頂けると嬉しいです。 分かりにくい表記の仕方で申し訳ありません。

  • 高校数学の行列です

    A=(a,b,c,d)(行列で順に左上、右上、左下、右下の順)(a,b,c,d∈R),A≠kE(k∈R),A≠Oとする (1)Aの固有値λと固有ベクトル↑xが存在する条件はλが固有方程式λ^2-(a+d)λ+ad-bc=0(1)の解であることを証明せよ (2)(1)が異なる実数の固有値(λ=)α、βをもつとき、それらに対する固有ベクトル (↑x=)↑x1,↑x2は1次独立であることを証明せよ (3)特にb=cのとき、(2)において↑x1⊥↑x2であることを証明せよ (1)はA↑x=λ↑x,↑x≠↑0(⇔A↑x//↑x(広義平行),↑x≠0) ⇔(A-λE)↑x=↑0,↑x≠↑0 ⇔(a-λ,b,c,d-λ)(x,y)=(0,0),(x,y)≠(0,0) ⇔det(A-λE)=(a-λ)(d-λ)-bc=0 ⇔λ^2-(a+d)λ+ad-bc=0 となっていたのですが ⇔(a-λ,b,c,d-λ)(x,y)=(0,0),(x,y)≠(0,0)ここまでは分かりましたが、 この次の⇔det(A-λE)=(a-λ)(d-λ)-bc=0これは何で言えるんですか? (x,y)は0では無いですが、行列って互いに0でなくても掛けたら0になることはありますよね、それに0になったとしてもdetも0になるんですか? (2),(3)は解説を読むと分かって参考のようにして ケーリーハミルトンの定理 A^2-(α+β)A+αβE=Oが成り立つから↑0でない任意の平面ベクトル↑xに対して A(A↑x-β↑x)=α(A↑x-β↑x) A(A↑x-α↑x)=β(A↑x-α↑x) よって(A↑x-β↑x)//↑x1,A(A↑x-α↑x)//↑x2とあったのですが (A↑x-β↑x)//↑x1,A(A↑x-α↑x)//↑x2が何故成り立つのか分かりません その後すなわち行列(A-βE),(A-αE)によって任意のベクトル↑xはそれぞれα、 βの固有ベクトル↑x1,↑x2にへ行くなベクトルに変換されるとあったのですが、これも何の事か良くわからないのですが、詳しい説明をよろしくお願いします (注)として行列Aが固有値α、β(α≠β)と固有ベクトル↑x1,↑x2をもつ場合、平面上の任意のベクトル↑xを↑x1,↑x2に平行なそれぞれのベクトル↑p,↑qに直和分解して↑x=↑p+↑qとする  このとき、行列P=1/(α-β)×(A-βE),Q=1/(β-α)×(A-αE)はそれぞれ↑xを↑x1,↑x2上へ平行射影する1次変換である  すなわち P↑x=↑p,Q↑x=↑q 特に行列Aが対称行列のときP,Qは正射影の行列になるとあるのですが ↑qに直和分解して↑x=↑p+↑qとする までは分かりますが、この後の説明 がさっぱりわかりません、詳しくお願いします

  • ハミルトン・ケイリーの定理

    ハミルトンケイリーの定理の問題なんですが、下の式って常に成り立っているといえるのでしょうか?? 二次正方行列をA、単位行列をEとする、またAの各成分は(a b)  (c d)←カッコは二つで一つの行列としてみてくだ      さい。 A^2+A+E=0のとき a+d=-1. (ad-bc)=1 が常に成り立つ。 マジで悩んでいます(>_<)誰か教えてください

  • ケーリー・ハミルトンの定理

    A:n次正方行列に対して 固有方程式:det(λI-A)=0のλの所にAを代入し 右辺を零行列に置き換えた式がケーリー・ハミルトンの定理として成り立ちますが、 このとき、固有方程式のA^k(k=0,…,n)の係数a_kは一般にどのように表せますか? 一応、a_n=1,a_(n-1)=trace(A),A_0=det(A)は成り立つと思っています。 もっと、直接的な言い方をすると、固有多項式のk次の係数はどのように表すことができますか?

  • 行列(高校)

    このカテゴリで、もうひとつ解決していない質問がありますが、補足をお待ちしているところなので、ご了承ください。(ベクトルの問題です) 今回教えていただきたいことは、行列です。 P=(a b c d)(←行列です),P^2-dP=P^(-1),ad-bc=1 のとき、P^3 を求めよ。 (1)P^2-dP=P^(-1) の両辺に P をかけると、P^3-dP^2=E となるので、P^3=dP^2+E となりますよね。 (2)それと、ケーリー・ハミルトンの定理より、P^2-(a+d)P+(ad-bc)E=0 → P^2-(a+d)P+E=0 ⇔ P^2=(a+d)P-E (1)で得られた式に、(2)で得られた式を入れて、 P^3=d{(a+d)P-E}+E=d(a+d)P+(1-d)E={ad(a+d) bd(a+d) cd(a+d) d^2(a+d)}+(1-d 0 0 1-d) これをまとめれば解になると思ったのですが、解はシンプルに E でした。ad-bc=1 をうまく使うと、私の求めた答えが E になるけど、私のやり方は実用的でないのか、 それ以前に根本的に間違っているところがあるのか(計算も含めて)わからないので、見てもらえますか? お願いします。

  • 行列の問題

    P=(a b) とP^2-dP=p^-1,ad-bc=1のとき、P^3を求めよ。 ......(c d) P^-1は逆行列です。問題文にケリー・ハミルトンと割り算を実行して、 (a^2+ad-1)P=(a+1)E・・・(1)という式を得ました。a^2+ad-1=0の時は分かるのですが、a^2+ad-1≠0の時が分かりません。模範解答では (1)より、P=kEと置ける「K=(a+1)/(a^2+ad-1)」とあり、ここまではいいのですが、 『P=(k,0) ........(0,k)なので』とあります。なんでPは単位行列なのでしょうか。 よろしくお願いします。

  • <数学C> ハミルトン・ケーリーの定理に関する問題

    行列A(a b)、E(1 0)が、A^2-4A+3E=0を満たすとき、      c d     0 1 a+d、ad-bcの値を求めよ。 という問題で、ハミルトン・ケーリーの定理を用いて式を出し、 与式と係数比較を行ってはいけないのはなぜでしょうか? *行列の表し方が微妙で申し訳ありません。

  • 3x3行列のn乗と指数関数 固有値を使った公式

    まず、2x2行列Aの固有値をα、β(α≠β)とすると、 ケーリー・ハミルトンの公式より A^2=(α+β)A-αβE 両辺にAをかけ、再帰的に整理していくと、 (β-α)A^n=(β^n-α^n)A+(β*α^n-α*β^n)E という公式ができます。また、行列Aの指数関数 e^A=Σ[n=0 to ∞]A^n/n! は、 (β-α)e^A=(e^β-e^α)A+(β*e^α-α*e^β)E という公式があります。β→αとすれば、固有値が重解のときの公式もできます。 3x3行列のときの固有値を用いたn乗と指数関数の公式も知りたいのですが、参考サイトなどがあれば教えてください。