• 締切済み

体の拡大ですが

L/Kを体の拡大、t∈Lとする。tを根とする多項式f(X)∈K[X]が存在すると仮定。 [K(t):K]が奇数ならK(t)=K(t^2)であることを証明せよ。 体K(t)にtを添加したらK(t^2)になるのであれば話は簡単なように思うのですが、それはどうも成り立たないような気がしています。たぶん成り立ちませんよね?[K(t):K]が奇数ということも使ってないですし。 [K(t):K]が奇数、ということを使う証明法はありますか?

  • ynsd
  • お礼率33% (3/9)

みんなの回答

  • koko_u_
  • ベストアンサー率18% (459/2509)
回答No.2

>[K(t):K(t^2)]=1 or 2はどのようにして導かれるのでしょうか? K(t^2) の元を係数とする方程式 X^2 - t^2 を考えるだけだべ。 一般の記法を使うからよくわからんようになっているだけでしょう。 具体的に K が有理数体だったりする場合で考えましょう。

ynsd
質問者

お礼

なるほど、わかりました!ありがとうございます!!

  • rinkun
  • ベストアンサー率44% (706/1571)
回答No.1

えーと K⊆K(t^2)⊆K(t) [K(t):K(t^2)]=1 or 2 [K(t):K]=[K(t):K(t^2)][K(t^2):K] が言えると思うけど。 これで[K(t):K]が奇数なら[K(t):K(t^2)]=1ですよね。

ynsd
質問者

お礼

確かに! K⊆K(t^2)⊆K(t) [K(t):K(t^2)]=1 or 2 [K(t):K]=[K(t):K(t^2)][K(t^2):K] が言えれば成り立ちますね!ありがとうございます!! [K(t):K(t^2)]=1 or 2はどのようにして導かれるのでしょうか?理解が悪くてすみません。。

関連するQ&A

  • ガロア拡大

    体Kの単純代数拡大体 L=K(γ) f(x):元γのK上の最小多項式 n=deg(f) G=Gal(L/K) M=L^{G}(固定体) g(x)=Π(x-σ(γ)) σ∈G の時、g(x)∈M[x]を示して、[L:M]=|G| を示したいです。 g(x)∈M[x]であることとはつまり、 σ(γ)∈M(=L^{G}) であることを示せばいいと思うのですが σはK上同型写像でありますが、γはK上にないので σ(γ)=γ であることをいえません。どのように示せばよいのでしょうか?

  • 最小分解体

    f(X)=X^4-7∈Q[X]として、f(X)のQ上の最小分解体をLとする。 (1) 拡大次数[L:Q]を求めよ。 (2) K=L∩Rとする。Kを分かりやすく記述し、L/Kが2次拡大であることを示せ。 K≠K' だが K`=~K'(同値)となるような体は存在するだろうか? (3) L/Qの中間体で、Qの2次拡大であるものを複数挙げよ。 (4) L/Qの中間体Mで、[M : Q]=4 である体を見つけ、これがある多項式のQ上の最小分解体になっていることを示せ。(具体的に多項式を与えよ) Kは十分に大きいFの拡大体とする。 (5) (X^2-3)(X^3+8)と(X^2-4)(X^4-9)で生成されるQ[X]のイデアルJとするとき、J=(f(X))となるような多項式を求めよ。 わからない問題がたくさんあって申し訳ないんですが、もしわかる方いたらぜ教えていただけたらと思います。

  • ガロア理論:分解体に関する疑問

    下の定理について,よくわからないのでどなたかわかる方教えてください. 分解体の存在定理: 体Fの多項式f(x)には必ず分解体が存在する 1.この定理の意味はどのような考え方に基づいているのでしょうか.間違って理解しているのかも知れません.  1)分解体が存在すれば,f(x)は一時多項式の積として表せるということですが,一次多項式の積として表せるのであれば,すべての方程式が解けるということと同義ではないのでしょうか  2)体の拡大をいう場合既知の数例えば√2を基に行い拡大体F(√2)が構成されることはわかりますが,方程式f(x)の根が存在することは代数学の基本定理で明らかであっても,その根がわからない(解けない)状態で体の拡大は行えると考えているのでしょうか(未知数のままの拡大).  未知数のまま拡大するという意味であれば,分解体の存在定理は当然のことのように見えます. よろしくお願いします.

  • ガロア理論:未知数の体の拡大

    ガロア理論で体の拡大といえば,通常既知の数,例えば,2のベキ根を添加して拡大すると本に書かれています. しかし,一方では,方程式が解けるということについて,次のようなことも書かれています. "いくつかのベキ根の有理式でf(x)の根が表せるということは,これらの根がすべて,いくつかのベキ根を含む体に含まれることにほかなりません" この記述は一応もっともだと思うのですが,"いくつかのベキ根を含む体"というとき,この拡大体を作るには,ベキ根の中に入る数(前の例でいえば,2)のように予めわかっていなければ,拡大できないのではないかとおもわれますがどうでしょうか.また,一歩譲って,ベキ根の中に入る数を未知数のままで体の拡大を行ったとしても根を求めるために必要ベキ根の値がぴったりと存在するかどうかはどのように保証されるのでしょうか.未知数による拡大しようとすれば,不可算無限のベキ根で拡大すれば,できそうですが,上の記述の"いくつかのベキ根"とは整合が取れません.この辺はどのように考えているのでしょうか. それと,3次方程式の根の公式を見ると,2乗根と3乗根が入れ子になっていますが,このような上の"..."の中に入っているのでしょうか.論理的には入っていないように見えるのですが. お願いします.

  • 有理関数体Q(√2)がQ上の代数拡大であることについて

    この代数拡大を言うには,Q(√2)のすべての元がQ上代数的であることを言えばいいんですよね? そこで,Q(√2)の任意の元はa+b√2 (a,bはQの元)と表せますので,このa+b√2に対して, f(a+b√2)=0―(1) となるような多項式Q[X]の元f(X)が存在することを言えばいいのだと考えました. しかし,(1)を満たすようなQ[X]の元であるf(X)が見つかりません… f(X)=X-(a+b√2) のようなものも考えましたが,これは係数が有理数体Qの元になっていないので,Q[X]の元ではありませんし. どのような多項式となるのでしょうか? 根本から考え方が違うのかもしれませんが,よろしくお願いします.

  • ガロア理論:単拡大定理の意義

    ガロア理論で,有理数体を係数体として,その根をx1,x2,...xnとしたとき,これらの根を添加した体Q(x1,x2,...xn)と単拡大定理を使った拡大Q(V(x1,x2,...xn)とはどこが違うのでしょうか.もちろん表現として違うことはわかりますが,この根を変数とするパラメータVが存在することによって,体を扱う上で何が違うのでしょうか.単拡大定理の存在理由が今一つわからないので,教えてください.

  • 増減表を使った証明。。

    環論の問題で f(X)⊂R[X]の次数が奇数ならば、f(X)は実数の零点を持つことを示せ。 という問題があるのですが、 自分がといたやり方としては 解)実数体上の既約多項式はすべて1次または2次である。という定理より奇数次数の多項式f(X)⊂R[X]を既約多項式にすると少なくとも1つは1次式になる。よって、実数の零点を持つ。 このように証明したのですが、ヒントには微積の増減表を使うようにとかかれていました。 だとするとこの証明だとだめですよね? 増減表を使った方法の証明分かるかた教えてください。

  • 体での共役の定義って?

    複素数での共役の定義を一般的に述べればどういう事か考えています。 a+biとa-biを掛けたり足したりすると実数になり,実数体は複素数体の真の部分体ですよね。 従って、これらの事を考慮して 最小多項式をとりあえず調べてやってみました。 1+iは0次式a=0の解には当然成り得ません。また一次式ax+b=0の解にも成り得ませんから更に二次式ax^2+bx+c=0…(*)を考えるとこれに1+iを代入して (2a+b)i+(b+c)=0を得,2a+b=b+c=0でなければなら事。 c=0の場合はb=a=0となり不適。よってc≠0でb=-c,a=c/2。 よって(*)に代入して c/2x^2-cx+c=0で両辺を2/c倍してx^2-2x+2=0。これが1+iのR上の最小多項式。 そしてこの方程式を解くと,x=1±iで他の解はx=1-i。 [3]√2のQ上の最小多項については α=[3]√2と置くと,α^3=2なのでx^3-2=0が[3]√2のQ上の最小多項式。 この3次方程式をQ上で解くと因数分解できないので他の解は無し。 R上で解くとx^3-2=(x-[3]√2)(x^2+[3]√2x+[3]√2)=0. よって他の解はx=(-[3]√2±√([3]√4-4[3]√2))/2 となりました。-[3]√2±√([3]√4-4[3]√2))/2は互いを足しても掛けても[3]√2でQの元にはなりません。 α∈E\K(Eは可換体Kの拡大体)が代数的な時。最小多項式が偶数次数の場合には場合には共役な解の対になっているが奇数次数の場合には共役対を持たない解がある。 [結論] 3次の場合にはペア無しが1つ現れる。4次の場合にはふたペアになると予想します。 従って,分かった事はどの元にも共役元が存在するとは限らない。 故に 「F'を体。FをF'の真の代数的拡大体とするとa∈Fに於いてx∈Fはaの共役である。 ⇔(def) (i) a∈F'の時はx=a (ii) a∈F\F'の時は ax∈F'且つa+x∈F' なるx∈F\F'」 が共役な元の定義だと思いますが…。 如何でしょうか? 体での共役の定義をご存知の方いらっしゃいましたらお教え下さい。

  • 代数学 拡大次数 体

    代数学の拡大次数について質問です。 LがKの拡大体であり、拡大次数[L:K]が1ならばL=K という命題の証明が分かりません。 片方の包含関係は明らかですが、他方のLがKに含まれる ということが分かりません。 どなたか分かる方、教えてください。よろしくお願い致します。

  • ガロア体GF(2)の2次拡大の2次拡大について

    GF((2^2)^2)の元の求め方を教えてください。 GF(2)の元は{0,1}で、既約多項式をx^2+x+1とすれば{0,1,x,x+1}の拡大体GF(2^2)が得られることはわかりました。 そこで、拡大体GF(2^2)をさらに2次拡大させたGF((2^2)^2)を求めたいのですが、既約多項式をX^2+X+b(10)=0としたとき、16個の元はどのように求められるのでしょうか。 また、GF((2^2)^2)の元も原始元のべき乗で表現できるのでしょうか。 数学専攻ではないので、できるだけ詳しく解説していただけたら幸いです。 質問の仕方が下手で申し訳ありませんが、よろしくお願いします。