• ベストアンサー
  • 困ってます

標本のサンプルサイズ

標本数20、標本分散s^2=10とする。 帰無仮説:s^2=σ^2、有意水準α=5%で検定する。 母分散σ^2=20である場合、帰無仮説が90%の確率で 棄却されるには標本数はいくつ以上にすればよいか? この問題がわからず困っています。資料を探してみたのですが、 正規分布に従う場合の母平均についてのサンプルサイズ決定法しか見つかりませんでした。考え方・計算法程度だけでも構いませんので、どなたか教えてください。

共感・応援の気持ちを伝えよう!

  • 回答数6
  • 閲覧数1159
  • ありがとう数6

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.6

(1) この過去問、もしホントにこの通りなら出題者が統計学を分かっていません。 > この問題(小問)の前で、「帰無仮説σ^2=10、対立仮説σ^2>10、α=5%で検定せよ」とあり、χ^2検定を行うと、帰無仮説が棄却されないという結果が得られるのです。 >「母分散が実は20だった。(母平均は35。)さきほどの検定結果はこの事実に反している。」  トンでもない!χ^2検定で帰無仮説が棄却されなかったということは「何も言えない」、すなわち結論が出ていないのであって、どんな事実にも反してなんかいません。検定の基本であり、しかも初学者がよく間違える所を出題者が間違えてどうする。 (2)まだ問題が明らかになっていない。というより多分、myanさんが見落としているのでは?  χ^2検定を行うというのは、母集団の分布を仮定して初めて可能になります。ところが、分布が平均と分散だけで指定できる訳がありません。同じ平均と分散を持つ様々な分布が無限にある。すなわち、この小問以前に、母集団の理論分布がどんなタイプの分布であるかが分かるような設定があるはず。 (3)母平均なしで母分散だけ分かっている(難問・奇問)のか、両方分かっている(ごく普通の話)のかでは条件が全然違いますから、「なお、母平均は35となっていました。」という扱いじゃダメです。  また分布が連続値なのか離散的なのかによっても扱い方が違う。 というわけで、 ・問題全体をもう一度よく調べて、分布の型をはっきりさせること。 ・ホントに設問が変だったら、この問題は無視しましょう。試験に出たってクレーム付ければノーカウントに出来ます。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

なるほど、そうですか・・。もうこの問題にこだわるのはやめます。 統計、自分なりに基本から学びなおします。 ・・そもそも、質問の内容、タイトル間違いだらけ・・。それなのに何度もご丁寧にありがとうございました。

関連するQ&A

  • 分散の検定

    昨年末のアクチュアリー試験での問題です。 分散の片側検定において,真の分散が帰無仮説において仮定された分散の3倍になったとき,帰無仮説が確率95%以上で棄却されるようにするには標本数が[ ]個あればよい.ただし,平均は未知とし,有意水準は0.05とする. という問題です。分布に何の仮定もないし、標本数の大きさを問うのだから正規分布近似も適当だとは思えません。とするとχ^2-testではできないように思います。こういう問題の場合、どのように解くものなのでしょうか?

  • 棄却域の求め方について

    棄却域の求め方について 分からない問題があるので質問させてください。 2つの母集団X,Yがあり、それぞれ正規分布N((μ1),(σ1)^2) , N((μ2),(σ2)^2)である。 このとき、帰無仮説H0 : μ1=μ2 対立仮説H1 : μ1 < μ2 を設定し、有意水準をαで検定したい。2つの母集団から選んだ標本の計測値をそれぞれ x[1],x[2],...x[m] , y[1],y[2],...,y[n]とする。(σ1)^2 = (σ2)^2 として良い時の仮説H0の棄却率を求めよ。 このような問題です。よろしくおねがいしますm(_ _)m

  • 統計の問題です。

    統計の問題です。 答えがなく困っています。よろしくお願いします。 x1,x2,…,xnが平均μ、分散1の正規分布N(μ,1)をしている母集団からの大きさnの無作為標本であるとする。xバー=Σ[i=1→n](xi/n)と置く。 標準正規分布上側確率0.025の点は1.96であることを用いよ。 1)xバーの標本分布を与えよ。 2)μの95%信頼区間を求めよ。 3)帰無仮説H0:μ=μ0を対立仮説H1:μ≠μ0に対して有意水準0,05で検定するときの棄却域を求めよ。 4)3)の検定問題において、xバーの値を固定した時、棄却されないμ0の値の全体と2)の信頼区間との関係を述べなさい。 一応解いた答えを載せますが、全部自信がないです。 1)f(xバー)=1/√2πexp(-(x-μ)^2/2) 2)P(|(xバー-μ)/1|=0.95 よって、μ-1.96≦xバー≦μ+1.96 3)棄却域Rは、R<-1.96,1.96<R

その他の回答 (5)

  • 回答No.5
  • motsuan
  • ベストアンサー率40% (54/135)

答えはほとんど出ているのではないでしょうか? χ^2分布の定義に戻って考えればいいと思います。

共感・感謝の気持ちを伝えよう!

  • 回答No.4

再度stomachmanです。 スジはmotsuanさんの仰る全くその通りだとstomachmanも思います。つまり、母集団の確率密度関数をf()とするとき、φ(n,g0)=多重積分 f(x1)...f(xn)δ(g(x1,x2,...,xn) - g0) dx1 ... dxn はgの値の確率密度関数である。(「gが平均のときは平面、分散のときは球面」てのは集合S={<x1,....,xn>|g(x1,x2,...,xn)=g0}のことで、これを使うと φ(n,g0)=多重積分(<x1,....,xn>∈S) f(x1)...f(xn)dx1 ... dxn と書いても良い。そういう意味ですよね。)  fが既知なら、母集団から取ったn個のサンプルの分散s^2が幾らなのか、その確率密度関数φ(n,s^2)が決まりますから、累積確率P(n,a)=積分{y=0~a} φ(n,y) dyが決まる。5%の危険率なら、 P(n,a)が5%になるaの値a1(n)と95%になるaの値a2(n)を計算できる。  さて、もうひとつの母集団(確率密度関数hが既知)があって、サンプルn個は母集団fか母集団hか、どちらか一方からn個取られたものであるとする。どっちなのかを90%の精度で判定するには、幾つサンプルがあれば良いか?と、こういう風に話が進まなくちゃ。  ところが、この質問ではちょっと状況が違います。まず ●母集団の確率密度関数fについて分散以外は全く未知であるとしなくてはならないらしい。だからPは具体的に計算できず、上記の論法は使えない。分散だけ分かったってしょうがない。 ●「帰無仮説が90%の確率で 棄却されるには」という所。サンプルに関する何かの確率が計算できるためには、帰無仮説「サンプルは(ある既知の)確率密度関数h(x)を持つ母集団から取った」が必要(仮説「s^2=σ^2」じゃダメ)で、この質問の場合には、他に何の分布の話も出てこないのでh=fという話だと推察される。  だとすれば、この帰無仮説「サンプルは母集団fから取った」が棄却される確率とは、すなわち「母集団fから取ったサンプルを、誤ってその母集団に属さないと判断する確率」に他ならない。従って質問は『90%の確率でこの判断を間違えるにはサンプル数nを幾ら「以下」にすればよいか?』という意味になる???これはカナリ変 < ってそれは深読みしすぎ。 ●ひょっとすると帰無仮説の概念に多少混乱を生じていらっしゃるのではないかと推測してます。(違ってたらごめんなさい。)  帰無仮説は、検定に掛けられる具体的な結論が引き出せなくては役に立たない。そして棄却されたときだけしか、意味のある結論が出ない。  たとえば H:「これらのサンプルn個は平均m、分散vの正規分布N(m,v)をなす母集団からランダムに採られた」という仮説なら、たとえば「サンプルn個の平均値」の予想される分布を具体的に計算でき、それと実際の「サンプルn個の平均値」とを比較して検定を行える。その結果「Hが正しいとすると、こんな平均値が出る確率は非常に低い。だからHはほぼ確実に間違いだ。」という結論になるか、「Hが正しいとすると、こんな平均値が出る確率は結構高い。もちろん、H以外の仮説でもこんな平均値が出る確率が結構高くなるものは幾らでもある。だから、これ以上は何も言えない」という結論になるか。  一方、仮説H:「サンプルn個はある母集団(確率密度関数h)からランダムに選ばれた。hについては未知だが、hの分散はσ^2。」を考えているとする。hが具体的に分からないから、これ以上話が進まない。Hは棄却できず、何も言えない。これは使い物にならない仮説。(回答#2でhの例を出しました。)  さらに、仮説H:「s^2=σ^2」を厳密に解釈すれば、「(サンプルの分散s^2がたまたまσ^2に合うとかいう話ではなく、)s^2=σ^2になるようにサンプルを選んだ」という意味です。この仮説から言えることは「s^2=σ^2の筈だ」だけであり、実際のs^2がσ^2と違った場合の結論は「s^2=σ^2になるようにサンプルが取れていない。間違えたのは誰だ!」、実際s^2=σ^2だったら「サンプルをちゃんと選んだのか、偶然合ったのか。どちらとも言えない」。これはもう確率・統計とは無関係の話です。

共感・感謝の気持ちを伝えよう!

質問者からの補足

先にstomachmanさんから頂いたご回答に対して、問題設定をすべて補足しておきました。質問の仕方があまりに悪かったことを重ねてお詫びします。あれだけでは統計的に意味を持たないこと、納得いたしました。 下の補足で述べた通りχ^2分布が出てくるため、混乱してしまって・・・。正規分布で考えて構わないのでしょうか?

  • 回答No.3
  • motsuan
  • ベストアンサー率40% (54/135)

私はうる覚えですが以下のように理解していました。 間違っていたらごめんなさい。 母集団の確率分布 f(x) (xは確率変数)の形が与えられたとき (たとえばパラメータσを含むなんちゃら分布)、 事象が独立として x1, x2, ..., xn が起きる 確率は f(x1)f(x2)...f(xn) となります。 したがって、サンプルx1, x2, ..., xnの 統計量 g(x1,x2,...,xn) (たとえば平均や分散)を ある値 g0 としたとき、 取りうるすべての組み合わせについて f(x1)f(x2)...f(xn)について和をとれば それがある値g0をとる確率になるのではないでしょうか? つまり、式で表すと 多重積分 f(x1)f(x2)...f(xn)δ(g(x1,x2,...,xn) - g0) dx1 dx2 ... dxn (変数x1, x2, ..., xnの積分です。δ はデルタ関数です。  要は超曲面上で積分するということになると思います。  gが平均のときは平面、分散のときは球面) を計算すれば、その事象が起きる (サンプルの統計量gがある値g0となる) 確率が得られます。 あとは話をひっくり返して、 g0を測定した量として、 確率分布fのパラメータがある値をとらない確率を決めて そのために必要なサンプル数を決めればいいのではないでしょうか? 違うかな?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご回答ありがとうございました。 質問そのものに問題があって、お手数をかけてしまいました。

  • 回答No.2

もし実務上出てきた問題だとすれば、情報不足?何かハナシを省略してませんか? (1) ホントに「母集団の確率密度を仮定しない。」という条件だとすると、例えば 母集団={分散10の正規分布に従う値}∪{ごく少数の、極度に大きい値}∪{ごく少数の、極度に小さい値} という分布でも母分散σ^2=20になりうる。そして母平均と母分散を保ったまま、「ごく少数」が母集団中に占める比率を幾らでも小さくできる。(その分「極度に大きい(小さい)値」の絶対値を大きくしてやれば良い。)従って、母集団からこの「ごく少数」を引き当てる確率は幾らでも0に近くなりうる。そういう母集団を用意することが可能です。  この状況では、本当に母集団から取ったサンプルでも、ほぼ100%の確率で誤って帰無仮説を棄却してしまいますから、検定という概念そのものが成り立ちません。 (2) 「標本数20、標本分散s^2=10とする。」の正確な意味が分からないです。1度だけ標本数20のサンプリングをしたらこうなった、というのでしょうか? (3) 「帰無仮説が90%の確率で棄却されるには」というのは?......「帰無仮説を誤って棄却してしまう危険率を10%以下にするには」というのなら分かるんですが、それについては既に「有意水準α=5%」と仰っているんだし。

共感・感謝の気持ちを伝えよう!

質問者からの補足

実務上のものではなく、机上の問題です。大学の講義の過去問です。 (2)はその通りです。(3)については、危険率を10%以下にするように問われていると思うのですが、問題はそのままでした。(1)ですが、確かに省略していた部分があります。この問題(小問)の前で、「帰無仮説σ^2=10、対立仮説σ^2>10、α=5%で検定せよ」とあり、χ^2検定を行うと、帰無仮説が棄却されないという結果が得られるのです。(実際の問題ではs^2=10.9となっていました。質問では10にしていますが、影響はないと思ったもので・・)そして、この問題で「母分散が実は20だった。さきほどの検定結果はこの事実に反している。では標本数をいくらにすれば、90%以上の確率で帰無仮説を棄却できるか?」と問われているのです。なお、母平均は35となっていました。状況設定等を省略しすぎて、回答者の方々をいろいろ困惑させてしまったことを、お詫びいたします。

  • 回答No.1
noname#211914

直接的な回答ではありませんが、以下の関連質問の回答は参考になりますでしょうか? あるいは、 ・http://www.okweb.ne.jp/oshiete.php3?c=392 このページで「統計」と入れて検索して見てください。 更に、以下のサイトを参考に勉強してください。 ・http://w3.cc.nagasaki-u.ac.jp/contrib/Excel/excel1.htmlhttp://www16.freeweb.ne.jp/school/gucchi24/http://stat.eco.toyo.ac.jp/~michiko/newfront/ch04/ ご参考まで。

参考URL:
http://www.okweb.ne.jp/kotaeru.php3?q=17226

共感・感謝の気持ちを伝えよう!

質問者からのお礼

いろいろと参考にさせていただきます。ありがとうございました。

関連するQ&A

  • エクセルによる母分散の検定

    一つの母集団から標本のサンプルサイズ10、標本平均50、不偏分散100を与え、母分散に関する帰無仮説 σ2=50、有意水準5%としたとき棄却域を求め仮説を検定しろ。 という課題がでたのですが、悪戦苦闘しています。どなたか分かる方教えてください。

  • 統計学の有意水準について教えてください!

    統計で検定を学んでいるのですが、有意水準が0.05のとき、比率の検定ならば、Z(0.05)=1.64 となっています。 公式で、棄却域に検定統計量Tが含まれる確率が α/2 になるところまではわかるのですが、 問題になり、実際に値をもとめるところになるとまったくわかりません。。。 この、1.64 という数字がどこからきたのか、 どうやって求めるのか、教えてください>< 正規分布表やT分布表は関係あるのですか??

  • 正規母集団で母分散未知の場合の母平均を検定する

    正規母集団で母分散未知の場合の母平均を検定するのに、t分布を使って次のようにしようと思いますがそれでよろしいでしょうか? 1. ある物体(非常にたくさんある)のパーツA、Bのそれぞれの長さの比が4対1であるように思われた。 2. そこで、この長さの比の平均値μ0(ゼロは添え字)=4と仮定し、さらにこの比が正規分布していると仮定する。 3. n=20の標本をとる。 4. 標本平均を「ラージXバー(以下、単にX_と略記)」、不偏分散をs^2、(sは標準偏差)とするとき次の確率変数Tは自由度n-1のt分布に従う。T=(X_-μ0)/(s/√n) 5. 帰無仮説H0=4、 対立仮説H1≠4 6. 有意水準を5%とします。 7. 両側検定とします。 8. 棄却域は2.093以上、または-2.093以下。 9. 20の標本からX_、s を求めて、Tを計算します。 10. もしT=1.8 ならば、帰無仮説は受容されます・・・等々。 このような進め方でよろしいでしょうか、よろしくお願いいたします。

  • 第2種の過誤と検出力、標本サイズ

    前回EPSカード実験の質問をした者です。 今回はその結果処理における統計処理にわからないところが出てきたので質問します。 5種類のカードを使って、それを見ずにカードの記号があたるか、あたらないかという検査をしました。試行数は250回です。偶然当たる確立pは5分の1、つまり0.2です。 ここでの帰無仮説はp=0.2で、有意水準は0.05です。 二項検定で、あるサンプルが棄却域を外れ、帰無仮説が棄却されませんでした。つまり、そのサンプルの正答率は偶然ではなかったのです。(回答率が高いほうで) ここで帰無仮説を採択したのですが、第2種の過誤の可能性がありますよね? 教えてほしいこと 1)帰無仮説を棄却できる確率、検定力の計算方法を教えてください。エクセルなどでできるのならば、その方法も教えてください。また、どのくらい検出力が低ければ採択しても問題はないのですか。 2)標本サイズが大きければ誤差は少ないのですよね?どれくらい大きければよいのか、その計算方法と共に教えてください。 実験の情報 先ほどのサンプル 250試行中、65回正答した。 足りない情報があれば補足します。なにせ、ほとんど理解していないので・・・。よろしくおねがいします。

  • 検定の質問です

    問題がどうしても解けないのでお願いいたします。 母分散と母平均が両方未知で正規母集団から大きさ51の標本を無作為抽出し、不偏分散Vを計算しました。 帰無仮説:母分散がvを有意水準0.05%で検定するときの棄却域をどうか教えてください。 カイ2条分布を用いて解けるとは思うのですが、どのように区間推定したら良いのかわからないのでよろしくお願いいたします。

  • 統計の問題がわかりません。

    統計の問題です。 途中まで解こうと試みましたが解答・解説が無いため不可能でした。 わかる方助けて下さい。 xを二項分布B(400,p)に従う確率変数とし、p^=x/400の分布を正規分布で近似するものとする。 1)p^の分布を近似する正規分布の平均と分散を示せ。 2)x=80の時、pの近似的95%信頼区間を求めよ。 3)仮説H0:p=0,5を対立仮説H1:p>0,5に対して有意水準0,05で検定するときの棄却域を求めよ。 4)3)の検定についてp=0.55の時の検出力の求め方を示せ。 途中まで作成を試みた解答 1) 二項分布なので(np,npq)の平均と分散になると思い、平均:np=400×(x/400)=x 分散:npq=x(400-x)/400 これは間違いでしょうか? 2)で1)を用いるとP(|x-x|<1.96)=0.95??となるような??? よろしくお願いします。

  • t検定について

    A) サンプル数 300  平均22.5  標準偏差4.00 B) サンプル数 1400  平均23.0  標準偏差5.90 のt 検定を」というご質問が出されていました。 私も興味ををもって解いてみましたが、best answer に選ばれた回答も出されておりましたが、ヒントであって、解は出ていませんでした。 次のようなことでいいのでしょうか。ぜひともお教えいただきたいので、よろしくお願いいたします。 この問題は仮説検定のうち、2つのサンプルの平均値に差があるかどうかを検定する問題だと思いました。 帰無仮説は 2つのサンプルの平均値には差がない」とします。 両群の平均的な分散は   ((300&#65293;1)*4^2*(1400&#65293;1)*5.9^2)/(300+1400&#65293;2)=31.50 このとき検定統計量は t=0.5/√(31.5(1/300&#65293;1/1400))=1.40 この問題では自由度が1698となり、分布表からは正確な数が出ませんが、正規分布になるときの数とから、有意水準5%なら 1.9779&#65374;1.9600 の間にありそうですので、検定統計量のほうが小さいと判断できると思いました。 よって「帰無仮説を棄却するすることはない。」と結論しました。 このようなことでいいのでしょうか。特に自由度が1698で分布表から具体的な数がきっちり求められないので、他のやりかたでなければならないのでは?と不安を感じているのですが。

  • 分散既知の仮説検定

    正規分布N(μ,σ^2)の母分散はすでにわかっていて(σ^2=9) 標本平均X~を用いて仮説 H0,μ=100 H1,μ=110 このような検定を有意水準α=0.05でするとき 第2種の誤りβも0.05未満にしたい  標本数nはどれぐらい必要なのかという問題です あらかじめnとX~がわかれば (X~-μ)/√(σ^2/n)という変換でt検定を行えばよいというのはわかるんですが nを求めるとはどういう手順をふんでいけばいいんでしょうか?

  • これはどういう意味ですか(泣)

    帰無仮説 2つの標本の平均値は等しい。 標本数1 6 平均値1 8.46 標準偏差1 4.002 標本数2 6 平均値2 21.82 標準偏差2 8.145 有意水準 0.05 検定方法 両側検定 F値 4.14217085610118 確率 0.0724572476022886 t値 3.60605002946898 確率 0.00479946268108932 自由度 10 結論 等分散の仮定は棄却されませんでした。 帰無仮説は有意水準 0.05 で棄却されました。 自由度 10 におけるPの値は 0.00479946268108932 です。 ある実験の前後の統計を出したいので、統計ソフトで計算した結果、よくわからない言葉が出てきてしまいました(泣) ちなみに標本数・平均値・標準偏差1が実験前で、標本数・平均値・標準偏差2が実験後の結果です。 5%有意差があるかないかを調べたいのですが・・この結論の日本語がよくわかりません。 どなたか詳しく説明していただけませんか。 バカですみません。

  • 統計用語(帰無仮説、有意水準)の使い方

    こんばんは、皆さん。 統計のテキストを読んでいますが、用語の使い方がしっくり来ません。 統計用語の使用方法について、次のような使い方は適切でしょうか? 言葉の使い方でおかしいところがあればご指摘ください。 帰無仮説を「推定母平均(母集団の平均値)は8である」と定義して、t検定を実施した。 採取したサンプルは1,2,3,4,5,10であった。 この時、推定母平均に基づくtは2.94484…であり、t分布表に基づくtは2.571であった。 よって、帰無仮説は有意水準5%で棄却される。 疑問点は次の箇所です。 ・「帰無仮説」の使い方 ・「推定母平均」という単語(googleではほとんど引っかからない) ・「有意水準」は「100-危険率」か?「有意水準=危険率」か? ・帰無仮説が棄却できない場合、「採択される」ことにしてしまってよいか? ・「帰無仮説が棄却される」ということは、「推定母平均は8ではない」と同義でよいか? ご教授お願いします。