• ベストアンサー

モンモール問題、完全順列、攪乱順列の拡張

モンモール問題、完全順列、攪乱順列で検索するといろいろな言い回しがあります。 1,2,3,・・・,n の数を並び替えたとき、先頭から数えた順番と数が一致するものが1つもない並べ方 n人がプレゼントをもちよって、バラバラに交換したとき、1人も自分自身の用意したプレゼントをもらわない方法 写像f:{1,2,…,n}→{1,2,…,n}ただし、単射かつ∀i∈{1,2,…,n},f(i)≠i の総数 これらの場合の数は、n!Σ[k=0,n]{(-1)^k}/k!であることはよく知られています。 そこで、拡張として次の総数を考えるとどうなるのでしょうか? n≦mとする。 写像f:{1,2,…,n}→{1,2,…,m}ただし、単射かつ∀i∈{1,2,…,n},f(i)≠i の総数 たとえば、n=3,m=4のとき、 (f(1),f(2),f(3))=(2,1,4),(2,3,1),(2,3,4),(3,1,2),(3,1,4),(3,4,1),(3,4,2),(4,1,2),(4,3,1),(4,3,2)

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

>n≦mとする。 >写像f:{1,2,…,n}→{1,2,…,m}ただし、単射かつ∀i∈{1,2,…,n},f(i)≠i >の総数 求める写像の総数を S(n,m) とする。包除原理より、 S(n,m) =Σ[k=0,n]{comb(n,k)*((-1)^k)*comb(m-k,n-k)*(n-k)!} =(n!)*Σ[k=0,n]{((-1)^k)*(m-k)!/((m-n)!*(n-k)!*k!)}. (答) 計算例: S(3,4)=11, S(5,9)=8544, S(11,14)=6581134823. >たとえば、n=3,m=4のとき、 >(f(1),f(2),f(3))=(2,1,4),(2,3,1),(2,3,4),(3,1,2),(3,1,4),(3,4,1),(3,4,2),(4,1,2), >(4,3,1),(4,3,2) 上記の10個の写像に加え、 (f(1),f(2),f(3))=(2,4,1)も条件をみたす写像。

ddgddddddd
質問者

お礼

ありがとうございます。 すごいです。 じっくり検討いたします。

その他の回答 (2)

  • tecchan22
  • ベストアンサー率53% (41/76)
回答No.4

あ、まったく一緒でしたね。(>_<) ごめんなさい。m(_)m

  • tecchan22
  • ベストアンサー率53% (41/76)
回答No.3

#1とやりかたは同じやけど、答えの表現を整理して、 P(m,n)-P(m-1,n-1)×n+P(m-2,n-2)×C(n,2)-・・・ =n !Σ[k=0,n](-1)^k (1/k !) C(m-k,n-k) Pは順列、Cは組み合わせです。 この形だと、m=nのときの拡張になっていることが分かりやすいと思います。

関連するQ&A

  • 攪乱順列とは・・・

    攪乱順列とはなんでしょうか。またその個数の求め方の公式(包含と排除の原理)が解りません。 なんとなく「順列で動かないものが1つもないもの」のようなことはわかります。 包含と排除の原理 n(U)-n(P1∪P2∪P3∪・・・・∪Pn) =n(U)-Σn(Pi)+Σn(Pi∩Pj)-Σn(Pi∩Pj∩Pk)+・・・・+(-1)^n*n(P1∩P2∩P3∩・・・・∩Pn) =n!*(1-1/1!+1/2!+1/3!+・・・・・+(-1)^n*1/n!) 結論として上の最後の行だけ覚えればいいのでしょうか。i,j,kが何かもよくわかりません。1-Pバーのようなことも書いてありますがちょっと理解できません。

  • 完全順列の漸化式

    完全順列をウィキペディアで調べると以下のように漸化式について解説していました。 モンモール数Anを与える漸化式を考える。 n番目に置く数の選び方は1からn-1までの(n-1)通りである。ここで選んだ数をiとする。 次にi番目がnかどうかで場合分けをする。 i番目がnであれば、i番目に置かれたnとn番目に置かれたiを除く(n-2)個の数の並べ方の 総数は、(n-2)個の数による完全順列の数、すなわちA(n-2)に等しい。 i番目がnでない場合は、n番目に置かれたiを除く(n-1)個の数の並べ方の総数は、(n-1)個 の数による完全順列の数、すなわちA(n-1)となる。 以上をまとめると下の漸化式が得られる。  An=(n-1)・{A(n-1)+A(n-2)}   n>=3 これでは訳が解らないのでn=4の場合を考えます。 4番目に置く数の選び方は1から(4-1)までの3通りである。ここで選んだ数iは3である。 次に3番目(i番目)が4(n)かどうかで場合分けをする。 3番目(i番目)が4(n)であれば3(i)番目に置かれた4(n)と4(n)番目に置かれた3(i)を除く(4-2)個 の数の並べ方の総数は、(4-2)個の数による完全順列の数、すなわちA(4-2)に等しい。 3(i)番目が4(n)でない場合は4(n)番目に置かれた3(i)を除く(4-1)個の数の並べ方の総数は (4-1)個の数による完全順列の数、すなわちA(4-1)となる。  A4=(4-1)・{A(4-1)+A(4-2)}=3×(A3+A2)  両辺をそれぞれ自力で強引に調べると確かに両辺とも9になっていて  この漸化式は正しいようですが、n=4の場合に簡単化してもいまひとつ  ピンときません。  平たく云って、この漸化式はどのような考え方に基づいて成り立って  いるのでしょうか。

  • 完全順列の証明

    赤チャートに完全順列の証明が載っていました <証明> n個の数の順列1,2,・・・,nの完全順列の個数をW(n)で表す。 1,2,・・・,nの完全順列をf(1),f(2),・・・f(n)とする。 f(1)=k とするとこの完全順列は[1],[2]のどちらかである。 [1]f(k)=1 であるもの  1,k を除いた 2,・・・,k-1,k+1,・・・,n のn-2個について完全順 列であるからその個数はW(n-2)個 [2]f=(k) ではないもの   f(h)=1とするとh=kではないから,f(1)=1,f(h)=kと置き換えると,1を 除いた 2,・・・,n のn-1個について完全順列であるから,その個数  はW(n-2)個 2≦k≦nであるから,kのとりうる値は n-1通り したがってW(n)=(n-1){W(N-1)+W(N-2)}    <終> いくつか理解できない点があります (1)なぜf(k)=1と、f(k)=1でないものに分けて考えているのでしょうか? (2)[2]で、f(1)=1,f(h)=kと置き換えるとはどういう事なのでしょうか?  何のために置き換えるのですか?

  • 完全順列の問題

    完全順列についての漸化式D ( n ) = ( n - 1 ) { D ( n - 2 ) + D ( n - 1 ) }がありますが、その証明方法がわかりません。(1)一番目がkでk番目が位置の場合(2)一番目がkで、k番目が1以外の場合 の二つに場合分けして解く方法は理解しました。 今回質問したいのは、「n枚の完全順列の個数をanとします。 (1)ここへn+1枚目の札をn+1番目に追加します。 n+1番目の札を1~n番目の札のどれか1枚と交換すれば、 n+1枚とも順番が一致しなくなります。よって、an個ある完全順列からn+1番目へはそれぞれn個ずつの完全順列が作れます。 (2)また、n個のうちk番目だけが揃ってしまっているものからも、 k番目の数とn+1番目の札を入れ替えれば、これも完全順列の1つとなります。n個のうちk番目だけが揃っている札の並べ方をbnとすると、 1~nまでのn個のbnから、それぞれ1通りずつの完全順列(の1部)が作れます。 以上のことより、次の漸化式が作れます。 an+1=nan+nbn   ……(i) k番目以外はn-1個の完全順列となっているため、 bn=an-1 (n≧2)が成り立ちます。これを(i)II代入して上の漸化式が求まります。」 という解説が理解できないということです。具体的な疑問点は、(1)、(2)のせれぞれの操作は各々理解しているものの、なぜこれを足し合わせればすべて網羅したことになるのかということです。他に数えもれがありそうのように思えます。そもそもなぜこのようなやり方なのでしょうか。 ご教授のほどよろしくお願いします。

  • 円順列

    1~nの数字を書いたカードがそれぞれm枚ずつ、計nm枚ある。 これを1列に並べる順列の数F(n,m)は、F(n,m)=(nm)!/(m!)^n では、このm枚を円環状に並べる円順列の数G(n,m)はどうなるでしょうか? m=1なら、 G(n,1)=F(n,1)/n=(n-1)! m=p (pは素数)なら、 G(n,p)=(F(n,p)-F(n,1))/(np)+F(n,1)/n =((np)!/(p!)^n-n!)/(np)+(n-1)! mが任意の自然数のとき、G(n,m)をnとmの式、または漸化式で表すことは可能でしょうか? ちなみに、n,mが小さい数値のときのG(n,m)の値は次のようになっています。 G(2,2)=2 G(2,3)=4 G(2,4)=10 G(2,5)=26 G(2,6)=80 G(2,7)=246 G(2,8)=810 G(2,9)=2704 G(2,10)=9252 G(3,2)=16 G(3,3)=188 G(3,4)=2896 G(3,5)=50452 G(4,2)=318 G(4,3)=30804 G(5,2)=11352

  • 名刺順列の個数

    1~nまでの数を1列に並べるときに、i番目にiという数字が来ない順列を名刺順列とか完全順列とか言います。 このような順列の個数をA(n)とすると、 A(n)=n! * Σ_{k=0}^{n} (-1)^k / k! であるそうです。この導出の仕方を教えて下さい。 ちなみに、A(n)に関する漸化式 A(n)=(n-1)*{A(n-1)+A(n-2)}, A(1)=0, A(2)=1は既に理解していますので、この漸化式の解き方でもいいです。 (この漸化式は1世代前の青チャートで見ました^^;) この式を用いると、全世界の人が名刺を1枚ずつ持ち寄ってシャッフルしたとき、自分のところに自分の名刺が戻ってくる人が1人もいない確率が1/e=36.8%もあることがわかり、なかなか神秘的なのですが。

  • 対称群(置換群)の転倒数の母関数、期待値、分散

    n個の整数{1,2,…,n}からなる順列 があるとき、その順列の総数はnの階乗 n!個存在する。 そのひとつを(a_1,a_2,…,a_n)で表す。 この順列において i < j かつa_i > a_j の関係にあるとき a_iとa_jとの間に転倒があるという。 この転倒の総数を転倒数という。 n!個の順列のうち転倒数がkの順列の場合の数は、 1(1+q)(1+q+q^2)…(1+q+q^2+…+q^(n-1)) を展開したときのq^kの係数に等しい。 これがどうしてなのか教えていただけないでしょうか? また、転倒数の期待値、分散もご存知であればどうか教えてください。

  • 数A 同じものを含む順列

    数学Aの『同じものを含む順列』について質問です。 問. E , C , O , N , O , M , I , C , Sの9文字を並べて出来る順列の総数を求めよ 答. 9! / 2! * 2! とあります。 これを『C』または、『P』で表すことは出来るのでしょうか。 すみませんが、ありましたら、ご教授願います。

  • 完全順列(モンモール数)の2項間漸化式の組合せ論的解釈

    http://ja.wikipedia.org/wiki/%E5%AE%8C%E5%85%A8%E9%A0%86%E5%88%97 より、 完全順列とは、整数{1,2,3,…,n}を要素とする順列において、i番目(i≦n)がiでない順列のことであり、その総数をモンモール数という。 その総数をa[n]とすると、上記のサイトに、3項間漸化式 a[n]=(n-1)(a[n-1]+a[n-2]) の組合せ論的解釈が書かれています。 また、2項間漸化式 a[n]=n*a[n-1]+(-1)^n が成り立つのですが、普通は3項間漸化式を元に代数的に変形して示します。 しかし、これを直接に組合せ論的解釈したいのです。 いろいろ考えても、いろいろ調べてもわかりません。 興味ある方はどうか教えてください。

  • 写像の問題をお教え下さい。

    いくら考えても全くわかりません。 お教えいただければ大変嬉しいです。お願いします。 問題 Aをm×n行列とし、行列とベクトルの積で与えられる線形写像A:R^n →R^m:x ↦ Axを考える。 以下の問いに答えよ。 (1) 写像Aが単射であるならば、n ≤ mであることを示せ。 (2) n ≤ mであって、写像Aが単射でない例をあげよ。 (3) 写像Aが単射であるならば、rankA = nであることが必要十分であることを示せ。 (4) 写像Aが全射であるならば、n ≥ mであることを示せ。 (5) n ≥ mであって、写像Aが全射でない例をあげよ。 (6) 写像Aが全射であるならば、rankA = mであることが必要十分であることを示せ。 (7) もしn = mならば、写像Aが全単射であることとAが正則であることが必要十分であることを示せ。