- ベストアンサー
- 困ってます
三角関数の問題
aは実数の定数、0≦θ≦2πの範囲において、 cos2θ-4(a+1)cosθ-4a-1=0 を満たす異なるθの個数を求めよ。 という問題で、 cos^2θ-2(a+1)cosθ-2a-1=0 t=cosθとおく t^2-2(a+1)t-2a-1=0 判別式は d/4=(a+2)^2-2 グラフを図示する (1)-2-√2<a<-2+√2 ではtは解なし (2)a=-2-√2,-2+√2 でtはそれぞれ1つずつ解を持つ (3)a<-2-√2,-2+√2<a でtはそれぞれ2つずつ解を持つ ここまでは分かるのですが、-1≦t≦1の処理とtの値に応じたθの 個数の求め方などが良く分かりません。 分かる方お願いします。
- kiwi2007
- お礼率98% (58/59)
- 回答数3
- 閲覧数92
- ありがとう数3
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.1
- Meowth
- ベストアンサー率35% (130/362)
判別式も大事ですが、さらに、もう1つ もとの y=t^2-2(a+1)t-2a-1(=0) のグラフがx軸と交差する点(解のことだけど) が-1≦t≦1 正確には t=-1 t=1 (このときは θは1つのtに1つ) か -1<t<1 (このときはθは1つのtに2つ) を考える必要があります。平方完成して、軸の位置が わかるようにして、軸がどこにあるのかを考えて -1≦t≦1の間の交点=解の個数を調べる必要があります。
関連するQ&A
- 高校数学 三角関数
こんにちは。春休み、集中して数学を勉強中の者です。 三角関数の問題で、わからない問題がありました。 ご解説をお願いできたらと思います。 問題1, tan^2θ + M tan^2θ + 1 = 0 の、 θが存在するように、 定数Mの値の範囲を求めよ。 やってみたこと Mについて解き、M=◯◯◯ の二次関数の式にしようとしたのですが Mが変な場所にある為できませんでした。 tan=sin/cos等も用いて書き換えてみましたが、 M=-1/sincos となり、詰まりました。 問題2, 0≦θ<2πのとき、 4sin^2θ - 4cos^2θ-5 +a=0 の、解の個数を、定数aの値によって分類せよ。 やってみたこと 解の個数、と言われて判別式を思いつき、 判別式 16-16(-5+a) つまり 6 >a や a =6 や 6 <a を試そうと思いましたが 見当違いだったようです。 よろしくお願いします。
- ベストアンサー
- 数学・算数
- 2次関数
解答がなく困ってます。どなたか添削お願いしますm(_ _)m aを0でない定数とする2つの方程式 ax^2-4x+a=0,x^2-ax+a^2-3a=0 について、次の条件を満たすaの値の範囲をそれぞれ求めなさい。 1.2つの方程式がともに実数の解をもつ。 2.どちらかの一方の方程式だけが実数の解をもつ。 *自己解答* 【2次方程式 ax^2+bx+c=0において、判別式D=b^2-4ac】【ax^2-4x+a=0を(1)】【x^2-ax+a^2-3a=0 を(2)】とする。 1.(1)(2)共に実数解なので、判別式も共にD≧0となる。 (1)の判別式16-4a^2≧0→(a-2)(a+2)≦0→-2≦a≦2 (2)の判別式a^2-4a^3+12a^2≧0→解き方が分からず a^2(4a-13)≦0 としてしまいました。→0≦a≦13/4 よってa≠0より 0<a≦2 2.(1)のみが実数解をもつ時 (1)の判別式D≧0→-2≦a≦2 (2)の判別式D<0→a<0または13/4<a よって -2≦a<0 (2)のみが実数解をもつ時 (1)の判別式D<0→a<-2または2<a (2)の判別式D≧0→0≦a≦13/4 よって2<a≦13/4 となったのですが、(2)の判別式が曖昧です。 社会人になってからの勉強ですので相当ブランクがあります。解説と併せてよろしくお願いします。
- ベストアンサー
- 数学・算数
- 三角関数の問題・・・
θの方程式で、 cos2θ+2sinθ+2a-1=0 (aは実数の定数)・・・(*) についての問題で (*)をみたすθが存在するようなaの値の範囲を求めよ。 とあるんですが、 二倍角使って a=1/2(-cos2θ-2sinθ+1) =1/2{-(1-2sin^2θ)-2sinθ+1} =sin^2θ-sinθ となってsinθ=tとおいて a=t^2-t とするところまではわかるのですが、この後わからなくて答えを見たところ答えが -1/4≦a≦2 となってました。どうしてこうなるのか教えてくださいm(__)m
- ベストアンサー
- 数学・算数
その他の回答 (2)
- 回答No.3
- postro
- ベストアンサー率43% (156/357)
その方針だとややこしくなるので、次の方針を提案します。 t^2-2(a+1)t-2a-1=0 をaについて解いて a=(t^2-2t-1)/{2(t+1)} ただし t≠-1 のとき f(t)=(t^2-2t-1)/{2(t+1)} として f'(t) を求め、増減表をつくって y=f(t) のグラフの慨形を書く そのグラフは、-1≦t≦1 の範囲で十分。 直線 y=a との交点の数で、、-1≦t≦1 の範囲のtの実数解の個数がわかる。
質問者からのお礼
回答ありがとうございます。 微分でも解けるんですね。 解き方は分かりませんが覚えておきます。
- 回答No.2
- take_5
- ベストアンサー率30% (149/488)
tの両端については、別途考えてください。考え方だけを書いときます。 tとcosθの対応は、 (1)0≦θ≦π/2 →0≦t≦1の時は1:1 (2)π/2≦θ≦3π/2 →-1≦t≦0の時は1:2 (3)3π/2≦θ≦2π →0≦t≦1の時は1:1 の3つの場合わけが必要です。 >グラフを図示する 与式を変形して、y=2a(t+1)とy=(t-1)^2-2とのグラフの交点として、-1≦t≦1で考えると良いです。
質問者からのお礼
回答ありがとうございます。 yのグラフを描いて軸と判別式のグラフをいじっていると出来ました。
関連するQ&A
- 二次関数 三角関数の問題
0≦x≦60° P=4cos^2x+2acosx-5 が常に正となるための定数aのとりうる値の範囲を求めよ という問題なのですが 常に正となる場合だから判別式D≦0でP>0にすれば いいのかな?っとおもったのですが 答えは場合わけして求めるようです どうして最初の考えと違うのでしょうか・ 間違えた理由がいまいちわからないので教えてください
- 締切済み
- 数学・算数
- 奈良大学の数学の問題です。
奈良大学の数学の問題です。 xの二次方程式x^2+(a+1)x+a+1/4=0 (以後(1)とする)、x^2+(a-1)x-a^2+b=0((2))がある。 (1)が実数解を持つ時、(2)も必ず実数解をもつようなbの値の範囲を求めよ。 解) (1)が解を持つようなaの範囲は(分かっているので略)a≦0または2≦a このaの範囲において(2)も必ず実数解をもつbの範囲を求める。 (2)の判別式をDとすると(2)が実数解をもつ時(略)b≦5/4(a-1/5)+1/5 ここからがいまいちピンときません。解答にはb=5/4(a-1/5)+1/5として、a≦0または2≦aの範囲でとる最小値はa=0のとき1/4だからb≦1/4とあります。 『b=5/4(a-1/5)+1/5のとき、a≦0または2≦aの範囲でとる最小値はa=0のとき1/4』はわかりますが、なぜここで『b=5/4(a-1/5)+1/5として』『だからb≦1/4』がわかりません。 a≦0または2≦a、b≦5/4(a-1/5)+1/5をab平面に図示して二つの領域が重なるときのbの範囲は…と考えていたのですが、この考え方は違うのでしょうか。教えてください。 (数学が苦手なので、一度答えてくださっても、また質問を返すかもしれません。すみません)
- ベストアンサー
- 数学・算数
- 数IIの三角関数の問題
数IIの三角関数の問題 次の3つの問題が分かりません。 解説をお願いします。 1、関数 y=cos2x-sinx(0≦x<2π) の最大値と最小値を求めよ。 また、与えられた実数aに対して、方程式 cos2x-sinx=a(0≦x<2π)の解の個数を求めよ。 2、45°≦θ≦135°のとき、関数f(θ)=3(sinθ)^2+4√3sinθcosθ-(cosθ)^2の最大値と最小値を求めよ。 3、aを定数とする。xについての方程式 (cosx)^2+2a(sinx)-a-1=0 の 0≦x≦2π における異なる実数解の個数を求めよ。
- ベストアンサー
- 数学・算数
- 三角関数について
kは定数とする。θの方程式 2(√3sinθ-cosθ)+(√3sin2θ+cos2θ)=k(0≦θ≦π) について次の問いに答えよ。 (1)t=√3sinθ-cosθとおくとき、tをrsin(θ+α)の形(r>0、-π<α≦π)に変形せよ。また、tの取りうる値の範囲を求めよ。 (2)(1)のtについてt^2を計算して、 √3sin2θ+cos2θをtの式で表せ。 (3)θの方程式 2(√3sinθ-cosθ)+(√3sin2θ+cos2θ)=k(0≦θ≦π)の解の個数を分類しなさい。 この問題で (1) t=2sin(θ+2/3π) -1≦t≦2 (2)√3sin2θ+cos2θ=-t^2+2 と答えがでて、 (3)y=kとy=-t^2+2t+2が共有点について調べればよい。までわかったんですが、そこからθの個数について分類するまでが分かりません。 解答は k<-1,3<kのとき解θは0個 -1≦k<2のとき解θは1個 k=2,3のとき解θは2個 2<k<3のとき解θは3個 となっていますが、0個の分類はわかるんですが、1~3個までの分類の仕方が分からないので教えてください。
- ベストアンサー
- 数学・算数
- 三角関数
すべての実数 θ に対して、 sin θ + cos ( θ + α ) = k が成立するとき、実数の定数 k , α の値を求めよ。 ただし、0 ≦ α < 2π とする。 sin θ + cos ( θ + α ) = sin θ + cosθcosα - sinθsinα = ( 1 - sinα )sinθ + cosαcosθ = √{ ( 1 - sinα )^2 + cos^2α }sin ( θ + β ) ( √ は{ } の中だけかかっています。) これが θ によらず一定のとき ( 1 - sinα )^2 + cos^2α = 0 sinα = 1 0 ≦ α < 2π より α = π / 2 , k =0 前にも書いたやつの別解なんですが。 「これが θ によらず一定のとき ( 1 - sinα ) + cos^2α = 0 sinα = 1 」 この部分がなんで、( 1 - sinα ) + cos^2α = 0 になるのかがわかりません。教えてください。 それと、別解もやっぱり解けるようにしておかなくてはいけないんでしょうか?
- ベストアンサー
- 数学・算数
- 三角方程式の問題
cos^2x-2asinx+a=0 (aは定数) が、0°≦x≦180°の範囲に2つ解をもつような定数aの範囲を求めよ という問題で質問です。 cos^2x=1-sin^2xであり、sinx=tと置いて、与式をt^2+2at-a-1=0に変形しました。 0°≦x≦180°から0≦sinx≦1であるため0≦t≦1の範囲にtが2つの解を持てばいいと考えました。 そこで、f(t)=t^2+2at-a-1として、 (ア) f(t)=0のときの判別式をDとして、D≧0となるaの範囲を求める 解:aはすべての実数 (イ) f(0)≧0となるaの範囲を求める 解:a≦-1 (ウ) f(1)≧0となるaの範囲を求める 解:a≧0 と、以上(ア)(イ)(ウ)の3つからaの共通範囲を求めようとしたのですが、 私のやり方ではaは共通範囲を持たず、よって解なしとなりました。 解なしという回答が正しいのかどうか、ちょっと不安なのですが、これは正解でしょうか?
- ベストアンサー
- 数学・算数
質問者からのお礼
回答ありがとうございます。 f(t)が(-1,2)を通る事と、 x=1とグラフが接するy座標-4a-2を考えると 判別式のグラフからa=-1/2と、 あと軸a+1は-1より左に来ないことから a<-2を省いて答えが分かりました。