• ベストアンサー

この三角関数の問題を教えてください。

この三角関数の問題を教えてください。 問題は cos2x+2acosx=3a であるとき、0≦x<2πの範囲にある解の個数は、実数aの値によってどのように変わるか。 です。 僕はこの方程式をaについて解いたんですけど、その先がわかりません。 あなただったら、まず最初に何をしますか? どうやってこの問題を解いたらいいんでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
  • spring135
  • ベストアンサー率44% (1487/3332)
回答No.2

cos2x+2acosx=3aより a=cos2x/(3-cosx)=(2cosx^2-1)/(3-2cosx) t=cosxとおくと a=(2t^2-1)/(3-2t) 従ってt-y平面において y=(2t^2-1)/(3-2t)  (1) y=a (2) の交点を調べればよい 0≦x<2πよりtの範囲は -1≦t≦1 (3) この問題は曲線(1)が正しく描けるかどうかで決まります。 y=(2t^2-1)/(3-2t)=-(t+3/2+(4/7)/(t-3/2)) より、これは 直線y=-(t+3/2)  (4) と 双曲線y=-(7/4)/(t-2/3)  (5) を加え合わせたものであることが解ります。 また(1)をtで微分して dy/dt=-(t^2-9t+1/2)/(t-3/2)^2 dy/dt=0となるのは t=(3±√7)/2     (6) です。 増減表を書いてしっかりグラフを書いてください。 (1)は t=-1 : y=1/5 から減少して t=(3-√7)/2=0.18.. : y=√7-3 で極小、ここから増加して t=1:y=1 答え a<√7-3 解は0 a=√7-3 解は1(重解) √7-3<a≦1/5 解は2 1/5<a≦1   解は1 1<a 解は0

すると、全ての回答が全文表示されます。

その他の回答 (2)

回答No.3

微分は最後の手段、乱用しないように。数IIで十分。 cosx=t (|t|≦1)とすると、条件式は2t^2-1+2at=3a であるから 2t^2-1=-2a(t-3/2)と変形できる。 従って、放物線:y=2t^2-1と定点(3/2、0)を通る傾きが -2aの直線:y=-2a(t-3/2)との交点の数として求められる。 但し、|t|≦1 の範囲で。 放物線と直線が接する時のaの値は判別式=0で求められるし、グラフから放物線は固定されていて直線が動くという、数Iでやった方法を三角関数に持ち込んだに過ぎない。 とは言え、xとtの対応(=tの一つの値に対して xの値が1個か2個か)については十分に注意が必要。 特に、条件式がsinxで与えられたなら 気がつきにくい。

すると、全ての回答が全文表示されます。
  • naniwacchi
  • ベストアンサー率47% (942/1970)
回答No.1

こんばんわ。 「aについて解いた」ところまではいいと思います。 まず、そのときに (分母)= 0となる場合を考えておかないといけませんね。 その後ですが、 a= (xの関数)の解はグラフで考えると、どのような点として与えられますか? いま (xの関数)は三角関数ですが、2次関数や 3次関数になるような問題もありましたよね。^^

すると、全ての回答が全文表示されます。

関連するQ&A

  • 数IIの三角関数の問題

    数IIの三角関数の問題 次の3つの問題が分かりません。 解説をお願いします。 1、関数 y=cos2x-sinx(0≦x<2π) の最大値と最小値を求めよ。 また、与えられた実数aに対して、方程式 cos2x-sinx=a(0≦x<2π)の解の個数を求めよ。 2、45°≦θ≦135°のとき、関数f(θ)=3(sinθ)^2+4√3sinθcosθ-(cosθ)^2の最大値と最小値を求めよ。 3、aを定数とする。xについての方程式 (cosx)^2+2a(sinx)-a-1=0 の 0≦x≦2π における異なる実数解の個数を求めよ。

  • 三角関数の問題について

    「a,cを実数とし、関数f(x)=√3sinx+2cos²x/2, g (x)=x²-2ax+1を考える。また、方程式 f(x)=cが0≦x≦πで異なる2つの解をもつようなcの値の範囲を求めよ。また、方程式 g(f (x))=0が0≦x≦πで異なる3つの解をもつようなaの値の範囲を求めよ。」 この問題の解答(解き方)が分からなくて困っています。是非教えてください。よろしくお願いします。 ちなみにこの問題は2011年度の南山大学の入試問題です。

  • 三角関数の問題です。

    三角関数の問題です。 2次方程式 5x^2-7x+k=0 の2つの解が、sinΘ、cosΘであるとき、  定数k の値と sin^3Θ+cos^3Θの値を求めよ。 です。 「sinΘ+cosΘ=7/5」 「sinΘcosΘ=k/5」 を使って計算するらしいのですが、 この2つの式はどうやって求めたのでしょうか?

  • 三角関数の問題のわからないところですpt2

    センターの三角関数の問題です。わからないところ以外の空欄は埋めています。 0≦θ<360°のときy=2sinθcosθ-2sinθ-2cosθ-3とする。 x=sinθ+cosθとすると、y=x^2 -2x - 4とかける。 x=√2sin(θ+45°)であるから、xの値の範囲は-√2≦x≦√2である。 したがって、yはθ=225°のとき最大値2(√2 - 1)をとり、最小値は-5である。 さらにkを定数とし、θの方程式2sinθcosθ-2sinθ-2cosθ-3=kが相異なる3個の解をもつときk=( )である 最後の空欄に関してなのですが、どのような順序で求めれば良いのかわかりません。sinθの値とθの解の個数の関係は理解しているつもりなのですが、今回はsinθではなく√2sin(θ+45°)となっているので混乱しています。よろしくお願いします。

  • 三角関数

    三角関数の問題について教えていただきたいです途中までは出来ました 1) y=cos2Θ+sinΘ(0≦Θ<2π) でsinΘ=tとすると y=-2t^2+t+1となり、yの最大値は9/8で最小値は-2 2) aを実数とし、Θに関する方程式cos2Θ+sinΘ=a…(1)を考えるただし 0≦Θ<2π (1)が解を二つ持つ時のaの範囲を求めよ 上の問題なんですが何処から手をつけたらよいかわかりません ご教授おねがいします。

  • 三角関数の問題

    aは実数の定数、0≦θ≦2πの範囲において、 cos2θ-4(a+1)cosθ-4a-1=0 を満たす異なるθの個数を求めよ。 という問題で、 cos^2θ-2(a+1)cosθ-2a-1=0 t=cosθとおく t^2-2(a+1)t-2a-1=0 判別式は d/4=(a+2)^2-2 グラフを図示する (1)-2-√2<a<-2+√2 ではtは解なし (2)a=-2-√2,-2+√2 でtはそれぞれ1つずつ解を持つ (3)a<-2-√2,-2+√2<a でtはそれぞれ2つずつ解を持つ ここまでは分かるのですが、-1≦t≦1の処理とtの値に応じたθの 個数の求め方などが良く分かりません。 分かる方お願いします。

  • 三角比の2次方程式の解の個数という問題でわからない問題があるので、教え

    三角比の2次方程式の解の個数という問題でわからない問題があるので、教えて下さい。 30°≦Θ≦180°とする。sin^2Θ+cosΘ-a=0・・・? について、 (1) ?が解をもつための定数aの値の範囲を求めよ。 (2) ?が異なる2個の解をもつための定数aの値の範囲を求めよ。 なのですが、 (1)はsin^2を(1-cos^2)にして、aを移行して、      -1≦a≦5/4 になるのはわかったのですが、 (2)の求め方が解説を読んでも理解できません(汗 答えは1/4+√3/2≦a<5/4 になるそうです。 どういう風に解けばよいのかがわかりません。 教えて下さい!!

  • 三角関数

    aを実数とする。 θ に関する方程式  2cos 2θ + 2cos θ + a = 0 について ( 1 ) t = cos θ として、この方程式を t と a で表せ。 ( 2 ) この方程式が解 θ を、 0 ≦ θ < 2 π の範囲で4つもつための、aのとり得る値の範囲を求めよ。 ( 1 ) 2 cos 2θ + 2cos θ + a = 0 4 cos^2 θ + 2 cos θ + a - 2 = 0 t = cos θ とおいて 4t^2 + 2t + a - 2 = 0 ( 2 ) ( 1 ) より a = - 4t^2 - 2t + 2 として、y = - 4t^2 - 2t + 2 と y = a の共有点が | t | < 1 に2つ ( 異なる ) 存在するような a を求めればよい。 ・・・・・・・★ y = - 4t^2 - 2t + 2  = - 4 ( t + 1/4 )^2 + 9/4 よって、求める a は  0 < a < 9/4 これの ( 2 ) の 「 この方程式が解 θ を、 0 ≦ θ < 2 π の範囲で4つもつための、aのとり得る値の範囲 」を求めるのに、 ★の 「 y = a の共有点が | t | < 1 に2つ ( 異なる ) 存在するような a を求めればよい。」になるのでしょうか? なぜ4つ求めるのに 2つでいいんですか?教えてください。 問題文が 2 cos 2 θ だからですか。。。?

  • 解が三角関数で表される2次方程式

    解が三角関数で表される2次方程式 aを正の定数とし、Θを0<=Θ<πを満たす角とする。このとき、2次方程式2x^2-2(2a-1)x-a=0の2つの解がsinΘ,cosΘであるという。a,sinΘcosΘであるという。 a,sinΘ,cosΘの値をそれぞれ求めよ。 与えられた2次方程式に対し、解と係数の関係からsinΘ+cosΘ=2a-1・・・・(1) sinΘcosΘ=-a/2・・・・・(2) (1)の両辺を2乗すると,sin^2Θ+cos^2Θ=1であるから1+2sinΘcosΘ=(2a-1)^2 これに(2)を代入して整理すると a(4a-3)=0 a>0であるからa=3/4 教えてほしいところ sinΘやcosΘは取り得る範囲が決まっていますよね??? よって、sinΘ+cosΘ=2a-1・・・・(1) sinΘcosΘ=-a/2とおいた時点でaの取り得る範囲が制限されるはずです。 よってa>0という条件に加えてさらにaの取り得る範囲は狭まるはずです。 ふつうの方程式のように解けば当然、そのようなことは考慮に入れていません。ですので、範囲の確認が必要なはず。 なのになぜ、a>0という条件しか確認しないんでしょうか???

  • 三角比の二次方程式なんですが・・・。

    三角比の二次方程式の問題なのですがどうしても解けなくて・・・。(泣) xの二次方程式(1-cosθ)x2+4(sin2θ)x+1+cosθ=0がただ一つの実数解を持つようなθの値と、その時の解を求めよ。ただし、0°≦θ<360°とする。 上記のような問題なのですが・・・どなたか教えて頂けませんか?(涙) 二乗の部分は文字の後に2って普通に打っちゃいましたすみません・・・;;

このQ&Aのポイント
  • 封筒印刷の汚れが発生しています。手差しで5枚までは問題ありませんが、6枚目から封筒の上部に薄いブドウ色の汚れが入ります。
  • ノズルチェックやクリーニングを行いましたが問題は解決しません。購入直後の新品です。
  • MacOS Sonoma 14.5を使用しており、無線LANで接続しています。関連するソフト・アプリはありません。
回答を見る

専門家に質問してみよう