- ベストアンサー
- 暇なときにでも
微分方程式の解き方
自分の趣味で、{f(x)}^2-f'(x)=0 という微分方程式が解けるかどうかやってみました。 解答 (1) f(x)=0は、与えられた微分方程式を満たす。 (2) f(x)=a (aは0以外の任意の実数の定数)は与えられた微分方程式を満たさないのでf(x)≠0、f'(x)≠0とする。 {1/f(x)}^2=1/f'(x)…(A) {1/f(x)}'=-f'(x)/{f(x)}^2 より {-1/f(x)}'=1とすると、{-1/f(x)}'=f'(x)/{f(x)}^2 f'(x)/{f(x)}^2=1 1/{f(x)}^2=1/f'(x) よって(A)と同じ式になる。 なので{-1/f(x)}'=1の両辺を積分して -1/f(x)=x+C (Cは任意定数) f(x)=-1/(x+C) となる。 (1),(2)より、一般解はf(x)=-1/(x+C)、特殊解はf(x)=0である。 これでOKでしょうか? この解き方が正しいか教えていただきたいですm(__)m
- angrox
- お礼率62% (10/16)
- 回答数2
- 閲覧数162
- ありがとう数2
質問者が選んだベストアンサー
- ベストアンサー
- 回答No.1

正しいと思います。 教科書的にいえば、変数分離型です。 y^2 = dy/dx と書けるので、 dy/y^2 = dx と変形でき、両辺を積分すれば、 -1/y = x+C が得られる、というわけです。
関連するQ&A
- 4階の微分方程式の解き方を教えてください!
問題で与えられる微分方程式は画像として添付しました。 (1) f(x)=0 のとき、この微分方程式の一般解 (2) f(x)=sinx のとき、この微分方程式の一般解 それぞれの求め方を教えていただけませんか? 自分で計算した結果 (1)y=(C1x+C2)cos2x+(C1x+C2)sin2x (A,Bは任意定数)となりました。 間違っているでしょうか?詳しい一般解の導き方を教えてください (2)特殊解をどのようにおけばいいのか分かりません おき方と解法を教えていただきたいです
- ベストアンサー
- 数学・算数
- 微分方程式の解き方を教えてください
y''+y=1/cosx という微分方程式の同次方程式y''+y=0の一般解は y=Acosx+Bsinx (A,Bは任意定数) ですが、特殊解の解き方が分かりません。 もし(右辺)=cosxなら逆演算子を使ってすぐに解けるのですが、(右辺)=1/cosxとなると分かりません。ご存知の方、お手数ですが教えてください。よろしくお願いします。 ※ y''=d^2y/dx^2
- ベストアンサー
- 数学・算数
その他の回答 (1)
- 回答No.2
- Knotopolog
- ベストアンサー率50% (564/1107)
一般解はf(x)=-1/(x+C)で良いですが,f(x)=0は特殊解ではありません. 特殊解というのは,一般解の積分定数 C に特別な数値を与えた解です. f(x)=0が特殊解だとするとf(x)=-1/(x+C)から 0=-1/(x+C) となり, 0・(x+C)=-1,ゆえに 0=-1 となり,矛盾です.与えられた常微分方程式の 特殊解とは f(x)=-1/x や f(x)=-1/(x+1) などのことをいいます. あなたが (1)に f(x)=0 と書かれており,(2)に f(x)≠0 と書かれていること自体が矛盾です.また,(1)で勝手に f(x)=0 と置いたことも誤りです. なぜならば,与えられた常微分方程式に f(x)=0 という解は存在しません. なぜならば,一般解 f(x)=-1/(x+C) は x と C に如何なる数を与えても 0 にはならないからです.
質問者からのお礼
遅くなってしまって申し訳ありません。回答していただきありがとうございます。
関連するQ&A
- 微分方程式の問題がわかりません
こんにちは、微分方程式の授業でわからない問題があって困ってます、 y''+ay'+by=0(a,bは実数の定数)においてy=(4-2x)e^-xが解である場合、a,bの値を求め、その一般解を求めよという問題です。 最後のページ解答が載っていてa=2、 b=1 y=(c1+c2x)e^-x (c1, c2は任意定数)となっているのですが。過程を是非教えていただきたいと思います。よろしくお願いします。
- ベストアンサー
- 数学・算数
- 微分方程式 (x+1)y''-(x+2)y'=0 が解けません。
微分方程式 (x+1)y''-(x+2)y'=0 が解けません。 式を変形して y''={1+1/(x+1)}y' ⇒ y'={1+1/(x+1)}y ⇒ y=Ae^x(x+1) などとやってみたのですが、解答は y=Axe^x+B となっていました(A,Bは任意定数)。 どなたか教えてください。
- ベストアンサー
- 数学・算数
- 2階微分方程式が解けません
[y''+y'/x-y/x^2=0 を解け] という問題を見かけたのですが,どのように解けばいいのかわかりません. (1)2階微分方程式にyが含まれないときはy'=pとおき,y''=dp/dxとして解く. (2)d^2y/dx^2=ky(k:定数)のときは公式がある. (3)y''+ay'+by=R(x)(a,b:定数,R(x):xのみの関数)のときは補助方程式の一般解と特殊解を求めて解く というのは教科書に書いてあったのですが,今回の問題はこの中のどの方法を使えば解けるのでしょか? 解答にはy=Ax+B/x(A,B:任意定数)とあります.
- ベストアンサー
- 数学・算数
- 微分方程式の問題で
微分方程式の問題で 「a,bが任意定数のとき、次式が一般解になるような最小階数の微分方程式を示せ。 y = ax^2 + 2bx」 の答えがわかりません。 答えは一階の微分方程式で (dy/dx) + y = ax^2 + 2(a+b)x +2b となるのか 二階での微分方程式で x^2 * y" - 2xy' +2y = 0 となるのかで迷っていて、 一階の微分方程式が特殊解なのか一般解なのかの判断がつかないと言う状況です。 というのも教科書には 「限定状況を与えなければn階の微分方程式にはn個の任意定数を含む」 とあるのですがこの限定条件がわからなくて判断がつきません。 どちらが正しいのでしょうか?
- 締切済み
- 数学・算数
- 微分方程式の問題で、もう一問質問です。
微分方程式の問題で、もう一問質問です。 aを実数の定数とする。 条件u(0)=1、u’(0)=aを満たす微分方程式 u”(x)+(1-x^2)u(x)=0 の解u(x)に対して f(x)=u’(x)+xu(x) とおく。 (1)f(0)を求めなさい。 (2)f’(x)-xf(x)=0が成り立つことを示しなさい。 (3)f(x)を求めなさい。 (4)解u(x)がすべてのxに対して正の値をとるものとする。このとき、定数aの値と対応する解u(x)の組を求めなさい。 という問題です。 (1)、(2)、(3)は解けたのですが、(4)の解き方がわかりません。 よろしくお願いします。 複素関数1問と微分方程式2問、続けて質問させていただきました。 ご教授願います。
- 締切済み
- 数学・算数
- 以下の微分方程式について
http://okwave.jp/qa4831916.html から。(2問めはできたので省略) 色々とご意見いただいたので、新しく質問板をたてました。 補足を書きます。 (1) y''+ (2/x)y' + (a^2)y =0 の一般解 z=xy 、z=(x^2)y などと置き換えましたが、結局できませんでした。 どうやって置き換えるかが知りたいです。 (2) 2x + y = Ce^(4x+y) を y=f(x)の形に (3) y + ((x^2) + (y^2))^(1/2) = C(x^2) を y=f(x)の形に この2つは微分方程式の一般解で、答えは y=f(x)の形になるようなのですがどうやってもできませんでした。 の以上3問です。 (y' = (dy/dx) ,(y^2)= yの2乗, C=任意定数 ,e=自然対数,a=定数)
- ベストアンサー
- 数学・算数
- 再び微分方程式の質問(2)です。
全くわからず手が付けられません。ご回答よろしくお願いいたします。 微分方程式 y’+2y(2乗)-2y=0 について問1~問3について答えよ。 問1 問題の微分方程式は変数分離型である。変数を分離した積分として、次の(1)~(4)の中から正解を選べ。正解がないときは(5)を選べ。 (1) ∫1/y(y-1)dy=∫2dx (2) ∫1/y(1-y)dy=∫2dx (3) ∫1/y(y+1)dy=∫2dx (4) ∫1/y(y-1)dy=∫1/2dx (5) (1)~(4)に正解はない。 問2 問題の微分方程式の解として、次の(1)~(4)の中から正解を選べ。正解がないときは(5)を選べ。 (1) 一般解y=1±√1-Ce(2x乗)/2 (Cは任意定数) (2) 一般解y=Ce(2x乗)/1+Ce(2x乗) (Cは任意定数) (3) 一般解y=Ce(2x乗)/1+Ce(2x乗) (Cは任意定数)と特異解y=1 (4) 一般解y=Ce(2x乗)/1+Ce(2x乗) (Cは任意定数)と特異解y=0 (5) (1)~(4)に正解はない。 問3 問題の微分方程式の解y=y(x)で、y(0)=1/2をみたすものがy(x)=2/3となるxとして次の(1)~(4)の中から正解を選べ。正解がないときは(5)を選べ。 (1) 1/2log2 (2) 3/2 (3) log6 (4) 1/6 (5) (1)~(4)に正解はない。 以上、よろしくお願いいたします。
- ベストアンサー
- 数学・算数
質問者からのお礼
遅くなってしまって申し訳ありません。回答していただきありがとうございます。