• 締切済み
  • すぐに回答を!

連成振動(円周上につながれた)分かりません

水平面に置かれた円周上を滑らかに動く3つの質点が相互にバネで繋がれている力学系を考える。 質点の質量をそれぞれ2m、m、m、バネ定数をkとし、3つのばねの自然長の和は円周に等しいとする。 また平衡位置からのずれをq1、q2、p3とする 運動エネルギーおよび位置エネルギーをq1、q2、q3とそれらの時間微分q'1、q’2、q’3を用いて表せ。 お願いします

共感・応援の気持ちを伝えよう!

  • 物理学
  • 回答数2
  • 閲覧数931
  • ありがとう数0

みんなの回答

  • 回答No.2

 バネは円周上に束縛されていますか? (平衡状態でバネは自然長ですか?)  それとも、たわまずに円周内で真っ直ぐに縮められていますか?  前者なら簡単に表せますが、後者なら平衡位置を求めるのも大変なように思います。(問題の雰囲気から前者のような気がしますが。)  もし、前者なら、バネの伸縮量は、それぞれ、q2-q1、q3-q2、q1-q3で表せるので、位置エネルギはすぐに記述できます。  運動エネルギは、、、分かりますよね。

共感・感謝の気持ちを伝えよう!

  • 回答No.1

とりあえず簡単な考え方だけ (系の位置エネルギー)=(各々のバネの伸縮によるエネルギーの和) (〃〃運動エネルギー)=(質量×質点の速度の二乗の和) ※質点は円上に拘束されているが、この拘束力と質点の速度は直交しているから、拘束力がなす仕事はゼロ(円の運動を考えれば自明)。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 連成振動の力学的エネルギーについて

    物理学で出題された連成運動の問題の解法がわかりません。 連成振動の問題では、固有値を用いて解くと教わったのですが、2つの運動方程式を 行列表示にできません。どの様に解けばよいのでしょうか。ご意見よろしくお願いします。 [問題] 左から「壁|バネ1+物体1+バネ2+物体2」となっている連成振動で、 物体1,物体2の質量をm1,m2、バネ1,バネ2のバネ定数をk1,k2、バネ1,バネ2の自然長をl1,l2 の条件のもと、1次元的に振動する運動をします。質点と床の間の摩擦や空気抵抗、バネの質量 は無視できるものとし、左端の壁からそれぞれの質点までの距離をx1,x2としてこの質点系の 力学的エネルギーの式を導け。

  • 振動力学の問題が分からないので教えてください

    振動力学の問題が分からないので教えてください。 図に示すように両端に質量mを有する軽い剛体棒が2つのばね(ばね定数k)に支持され振動している。 このばねー質点系の振動(図は平衡位置)について、微小振動の振動方程式を求めよ。 後固有円振動数ならびに振動比を求めよ。

  • 質量のない長さLの棒の上端と下端にそれぞれm1とm2(m1<m2)の質

    質量のない長さLの棒の上端と下端にそれぞれm1とm2(m1<m2)の質点が付いているとします. さらに下端(質量m2の質点)にバネ(バネ定数k)が付いていて平衡状態(y=0)にあるとします. いま棒に上から力Fを加えたときの運動方程式を導出したいと考えています. (このとき物体は回転しないものとします) ラグランジュ方程式を用いる場合,ポテンシャルエネルギーはバネによるものだけで良いのでしょうか? それとも重力によるものも考える必要がありますか?(m1の位置が平衡状態から高さLの位置にあるので)

  • 連成振動

    |~~~~~○~~~~~○~~~~~| →g 天井    Q     P     床 ※この図は右を下にしてみてください。 自然長L、バネ定数kのバネA、B、Cがあり、図のように質量mの小球P,Qを取り付ける。 バネは左から順にA、B、Cとします。 (1)P,Qがつりあいの位置にあるときバネABCのそれぞれの伸び(縮み)はいくらか? (2)Pを床方向にd,Qを天井方向にdの位置で離した時Pがつりあいの位置を通過するときの速さはいくらか? 【解答】 (1)A,B,Cの変位をLa,Lb,Lcとすると kLa-kLb-mg=0、kLb-kLc-mg=0、La+Lb+Lc=0・・・☆ これらよりLa=-Lb=mg/k、Lb=0 (別解) 図のP,Qの位置を原点として床向きにXp軸,Xq軸をとると運動方程式★ mXp"=k(Xq-Xp)-kXp+mg mXq"=-k(Xq-Xp)-kxXq+mg つりあいの位置はx1"=x2"=0とこの2式から x1=x2=mg/k→La=-Lb=mg/k、Lb=0 ☆★の式が立てられません。バネBの変位がよくわからないみたいです。 (2)エネルギー保存則から出そうと思い ★の運動方程式から導き出そうと思ったのですができません。 解説お願いいただけますでしょうか。わかりにくいところは補足いたします。

  • 連成振子

    ~~はバネ定数がすべてkのばね、○は左から順に質量m1,m2,m3の質点としてください。 下図の時、この振子の振動をx軸方向の一次元運動とし、3つの質点の座標をx1,x2,x3として解きたいのですが、まず3つの質点の運動方程式をたてなければならないことは分かっているのですが、バネが多すぎてどのようになるのかよく分かりません。一体どうなるのでしょうか?  壁―~~―○―~~―○―~~―○―~~―壁

  • 振動

     |   つりあいの位置  |   k 壁|/\/\/\/\/ー○  | :→   m  | : x これは机の上に置かれた球とばねを上から見た図であり、 球と壁はばねで繋がれているため、球はばねによってxの方向に振動する 球の質量をm、ばね定数をkとする。ここでは簡単のため球と机の抵抗はないものとする。 このときの球の振動について考えてみよう。 問題1、 つりあいの位置を原点とし質点の変位(ばねの伸び)をxとするとき、 質点がばねから受ける力Fを示せ。 次に運動方程式について考える。まず力Fを受ける質点の運動方程式は          ma=F       ・・・(1) である。ここでaは加速度を表す。また加速度は質点の変位を時刻tで 二回微分した関数である。つまり、          a=dの2乗x/dtの2乗 ・・・(2) である。 問題2、質点の運動方程式をm,x,kを用いて表せ。 今質量mとばね定数kが与えられているとすると問題2で求めた方程式では、tの関数x(t)は未知である。 このように未知の関数の微分を含む方程式を微分方程式という。 問題3 関数          x(t)=C1coswt+C2sinwt ・・(3) が問題2の式を満たすようにwを決定せよ。  つまり関数x(t)=C1coswt+C2sinwtは問題2の微分方程式の解となる。 まだC1とC2の値を決めていないが、C1,C2がどのような値でも、 式(3)は微分方程式の解となることがわかる。このように、微分方程式は無数の解を持ち、解を一つ決定するためには他の基準が必要となる。 問題4 手で球をx=aの位置で固定させておき、時刻t=0で手を離した。 解x(t)を決定せよ。  (ヒント:t=0のとき速度dx/dtは0) このように時刻0での状態により解が一つ決定する。 問題4で求めた解x(t)は時刻tでの質点の位置を表す。 何方か助けて下さい。高校で物理とってなかったので分かりません。

  • 振動力学の問題が分からないので教えてください

    図に示す位置Bの物体がxb=bsinωtとなる水平振動をしている。図中mは質点の質量cはダッシュポットの粘性減衰係数k1,k2はそれぞればね定数を表す。位置Aの質点は摩擦なしで水平運動することができる。 (1)この系の振動方程式を求めよ (2)この系に減衰がないとした時の非減衰固有円振動数を求めよ 本当に分からなくて困っているので教えていただけると助かります。

  • 高校物理、力学的エネルギーの保存

    滑らかな水平面上に質量Mの球Qがばね定数kのばねを付けられた状態で置かれている。 左から質量mの球Pが速度v0で進んできた。 ばねの縮みの最大値lを求めよ。 ばねの縮みが最大の時、Qから見たPの相対速度が0である。(これはわかります) 力学的エネルギー保存則より、 (1/2)(mv0)^2=(1/2)(mv)^2+(1/2)(Mv)^2+(1/2)l^2 (疑問) PとQが衝突して、その相対速度が0になっているのですから、 縮みが最大のときのPの速度をvp、Qの速度をvqとすると、 (反発係数の式)vp-vq=-e×v0のe=0ということになります。 これは非弾性衝突ですから、力学的エネルギーは保存されないと思うのですが、どうして力学的エネルギーは保存されるのでしょうか

  • 2物体の連成振動

    理系大学一年です。物理の問題で不明な点があります。 壁|∞●∞●∞|壁 (ただし∞はバネ、●は質点を表す) バネ定数は左からk1,k2,k3 質点の質量は左からm1,m2です。 この力学系の縦振動の基準各振動数ω1,ω2と、各々の基準各振動について二個の質点の変位の振幅の比を求めよ(ただし、両質点の位相は同位相か逆位相とせよ)という問題です。 m1、m2の変位をそれぞれx1,x2としてまず、運動方程式をたてました。 (m1)かけるx1ツードット=-(k1)(x1)-k2(x1-x2) (m2)かけるx2ツードット=-(k2)(x2-x1)-(k3)(x2) そして、一般解をx1=C1 cos(ωt+α)  x2=C2 cos(ωt+α)と置き、 運動方程式にそれぞれ代入しました。 すると、次の式が得られました。 -(m1)(ω^2)(C1)=-(k1+k2)C1+(K2)(C2) -(m2)(ω^2)(C2)=(k2)(C1)-(k2+k3)C2 そして、行列式(左上、右上、左下、右下の順で (k1+k2)-(m1)(ω^2)、-k2、-k2、(k2+k3)-(m2)(ω^2))が0になるという条件を用いて、ω^2=pとおいて、pについて解の公式を用いて出すと 二次方程式が解けません。ルートの中身(b^2-4ac)が(なんか)の二乗になればいいのですが。 一カ所符号が違えば、きれいにルートが外せる気がします。 そうするとω^2=(k1+k2)/m1,(k2+k3)/m2となるのですが、 納得がいかず、先に進めません。 いままでのところでおかしい部分があるのでしょうか。 お忙しいとは思いますが、ご教授ください。

  • 単振動について

    バネ定数kのバネに質量mのpがつるされて停止している。この位置Oからpをしたへ引っ張って放すと、pは運動を始める。 Oを原点とし、下向きにx軸をとる。バネの自然長をl、pを放した点をA(x=d)とし、放した時をt=0とする。Oでの伸びをLとする。この時の最大の速さを求めたいのですが、 答えには単振動のやり方で書かれていました でも単振動は覚えるのが多くめんどくさいので、力学的エネルギー保存則でとこうと思ったのですが、式的には 1/2kd^2=1/2mv^2なんですが、 位置エネルギーは入らないのかと思い疑問に思ったので質問しました わかる方教えてください!!