• 締切済み

リーマン面を求める

1.w=z^(1/2)+(z-1)^(1/2) 2.w=[{(z^2)-1}/w-a]^(1/2)  ただしIm aは0でない   以上のリーマン面を求めたいのですが、まず先に1はニ価関数ですがそれが二つくっついていた場合どうしてよいのか全くわかりません。 w=z^(1/2)であれば求められるのですが、もう一方のw=(z-1)^(1/2)をどう処理したらいいのでしょう。 次に2ですがこれは単純なニ価関数かと思いましたがwが余計で先に進めません。辺々二乗して計算していくというのも釈然としないですし・・・・。 どなたか助けてくださいw

みんなの回答

回答No.2

まず、1.は2価函数ではありません。4価函数です。 問題の主旨についてですが、「リーマン面を求める」というのはどういうことでしょうか? z平面またはz球面を切り開いて貼り合わせるようなことをお望みでしょうか? 気づくのは、1.も2.も代数函数だということです。 したがって、代数函数体からリーマン面を構成することも可能です。 あるいは、単に種数を求めるということでしょうか? ちなみに、1.の種数は0で、4枚のz球面に切り込みを入れて貼り合わせて、1枚のw球面にすることができます。 2.は両辺を2乗すれば楕円曲線であることが分かります。したがって、種数は1です。

回答No.1

一つ目は、あえて図に描くと、 ===x======x======    ↑    ↑    0    1 二つ目は、まず2乗して、wについて、まとめてください。   

関連するQ&A

  • リーマン面

    z=x+iyに対して√w=u(x,y)+iv(x,y)とおいた時 u(x,y) v(x,y)を具体的にx,yの関数で表示すること (√r)e^(θ/2) ,(√r)e^{(θ/2)+π} まではわかったのですが、リーマン面の考えを用いて答えにいたるまでがわかりません。

  • リーマン面の問題です。

    リーマン面の問題です。 連続関数 f:C^2-(x≠0) → C ; (a,b) → b/a は C^2全体からP^1への連続写像に延長できるか。 答えは出来ないみたいなのですが、 どうしてできないのか分からなくて困っています。

  • コーシーリーマンの問題について

    φ=x^2-y^2,ψ=2xyはコーシーリーマンの式を満たすことを示せ。 また、複素関数wがzの関数で表すことができない場合は、コーシーリーマンの式を満たさないことを示せ。 という問題なのですが、 >また、複素関数wがzの関数で表すことができない場合は、コーシーリーマンの式を満たさないことを示せ。 ここの解は、 例えば、x^2+iy^2のような関数はφ=x^2,ψ=y^2であり、 ∂φ/∂x=2x,∂ψ/∂y=2yとなり、コーシーリーマンの関係式が満たされるのはz平面内で直線y=x上だけである。 よって関数x^2+iy^2は満たさない。 このような解でいいんでしょうか? よろしくお願いします。

  • 複素関数

    zを複素数とするとき、w=z^3により、z平面はw平面にどのように写像されるか。また、z=w^1/3のリーマン面を図示せよ。  という問題で、前半部分を教科書で調べたところ、w=z^3の逆関数w^3=zを満足するwをzの関数として解いていくのですが、どうしてこのような手順で解くのか分かりません。  また、後半部分は全く分からないので、どなたか教えてください。

  • 1次元複素多様体は何故リーマン面?

    よろしくお願い致します。 Xが複素atlasAのリーマン面とはXがAに於ける1次元複素多様体となっている時なのだそうです。 XはAに於けるn次元複素多様体  ⇔ (i)XはAに於けるn次元複素位相多様体, (ii)∀(U,V)∈{(U,V)∈T^2;U∩V≠φ}に対して, ∃f,g∈A;U=dom(f),V=dom(g)且つMap(g(U∩V),f(U∩V))∋fg^-1はbiholomorphic という定義を突き止めました。 で、f(z)=√zが2葉のリーマン面を使用して表される事は 知っていて,これが実際に1次元複素多様体を成している事を理解したいのですが f(z)=√zでのリーマン面(1次元複素多様体)にてXはC∪C(複素平面)になろうかと推測したのですがこれではC∪C=Cとなってしまい,1葉になってしまうので間違いと思います。 あと,f(z)=√zでの複素atlasは具体的にどのような同相写像の族となるのでしょうか? ttp://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1011365205 で取り合えずイメージは分かりました。 XはC_1∪C_2 (C_1=CとC_2=Cだが異なる複素平面),f:C_1∪C_2→Cとなるのかと思います。この場合,C_1∪C_2に於けるatlasAは何と書けますでしょうか?

  • なぜ√zの定義には2葉のリーマン面が要るの?

    複素関数f(z)=√zでなぜリーマン面なるものを導入するのか分りません。 実関数の例ではf:R→2^R;f(y)={±√y}などが2価関数ですよね。この時の分枝は (ア) g_1(y):=√yとg_2(y):=-√y や (イ) g_1(y):=√y if 0≦y<1,-√y if 1≦yとg_2(y):=-√y if 0≦y<1,√y if 1≦y など色々,無数に定義できますよね。 そして出来るだけ不連続点や微分不能点が少なくなるように分枝を選ぶしきたり(?)なのですよね。よってf(y)={±√y}の例では(ア)を分枝とする。 さて,f(z)=√zに話を戻すと,普通に考えて,√zは極座標で定義されて2つの点{√|z|(cos(θ/2)+isin(θ/2)),√|z|(cos(θ/2+3π)+isin(θ/2+3π))}を表しますから (z=0以外定義域の各点の像が単集合とならず複数元を持つ集合となる場合に多価関数と呼ぶ) f:C→2^Cを √z:={√|z|(cos(θ/2)+isin(θ/2)),√|z|(cos(θ/2+3π)+isin(θ/2+3π))} if z≠0, {0} if z=0. 但し,-π<θ≦π. と定義すればいいのではないかと思います。 この時,簡単なために{z∈C;|z|=1}で話を進めると, 連続性に関しては z=-1の時,θ=πで lim_{z→-1}√z=lim_{θ→π-0}{√|z|(cos(θ/2)+isin(θ/2)),√|z|(cos(θ/2+3π)+isin(θ/2+3π))} =lim_{θ→π-0}{√|-1|(cos(θ/2)+isin(θ/2)),√|-1|(cos(θ/2+3π)+isin(θ/2+3π))} ={±i}=f(-1) であり,他方 lim_{θ→-π+0}{√|z|(cos(θ/2)+isin(θ/2)),√|z|(cos(θ/2+3π)+isin(θ/2+3π))} ={±i}=f(-1) なので,f(z)=√zはz=-1で連続。 lim_{z→0}f(z)=lim_{z→0}{√|z|(cos(θ/2)+isin(θ/2)),√|z|(cos(θ/2+3π)+isin(θ/2+3π))}={0}=f(0). となるのでz)=√zはz=0でも連続。 微分可能性に関しては d/dzf(z)|_{z=-1}=lim_{C∋h→0}(√(-1+h)-√-1)/h =lim_{R∋h→-0}{[√|z|(cos((π+h)/2)+isin((π+h)/2))-|z|(cos(π/2)+isin(π/2))]/h,[√|z|(cos((π+h)/2+3π)+isin((π+h)/2+3π))-√|z|(cos(π/2+3π)+isin(π/2+3π))]/h} ={±i/2} 同様にlim_{R∋h→+0}の場合も lim_{R∋h→+0}{[√|z|(cos((-π+h)/2)+isin((-π+h)/2))-|z|(cos(-π/2)+isin(-π/2))]/h,[√|z|(cos((-π+h)/2+3π)+isin((-π+h)/2+3π))-√|z|(cos(-π/2+3π)+isin(-π/2+3π))]/h} ={±i/2}となるのでf(z)=√zはC\{0}で微分可能となります。 これではどうしてダメなのでしょうか? どうしてarg(z)は(-π,π]と(π,3π]のわざわざ2価関数であるとして,2葉のリーマン面(C\{0})^2が必要なのかわかりません。 1葉の面に2つとも載せたらどういう不都合が起こるのでしょうか?

  • 複素数の問題です。

    z平面上の領域 Im(z) > 0 が1次分数変換 w=(αz+β)/(z+γ) によってw平面上の領域|w|<1 に写されるとき、複素数α,β,γを求めよ。ただし、Im(z)は複素数zの虚部を表す。

  • 複素関数

    聞きたいことが2つあります。 1つ目は複素関数w=u+ivについてです。 この関数がコーシーリーマンの関係式を満たすとき、w'=a+ibもコーシーリーマンの関係式を満たすことを示したいのです。 まず、wにコーシーリーマンの関係式を適用してからラプラスの関係式を適用して d^2u/dx^2 + d^2u/dy^2 =0 d^2v/dx^2 + d^2v/dy^2 =0 となります。 このあと、a=du/dx + du/dy b=dv/dx + dv/dy と定義します。 でコーシーリーマンの関係式を使ったのですがどうにも一致しません^^; aとbの定義が違うのでしょうか? 2つ目は円柱周りの流れを表す複素速度ポテンシャルについてです。 f(z)=Az+B/z=φ+iψ f'(z)=u-iv と定義されていて、境界条件が設定されているのですが使い方がよくわかりません。 f(z)=φ+iψで、ラプラスが成り立つことは証明済みなのですが、これをうまく使うのでしょうか? どうぞ、よろしくお願いします。

  • 指数関数論

    目標は f(a,z)=a^z (a,z∈C) を完全に定義することです 1. a^0=1 2. n∈N ⇒ a^n=a^(n-1)*a 3. n∈N,a≠0 ⇒ a^(-n)=1/(a^n) 4. e^z=Σ[n=0~∞](z^n/n!) 5. Im(w)∈[0,2π) ⇒ ( w=Log(z) :⇔ z=e^w ) 6. R>=0,Re(θ)=0 ⇒ Log(Re^(iθ)):=Log(Re^mod(θ,2π))  (偏角の拡張)  * mod(θ,2π):=θ-2π*[θ/2π] とします 7. a^z=e^(z*Log(a)) とりあえず、ここでは、1価関数になるように Logで主値を考えましたが、多価関数として扱えるように することもできると思います このような形で定義すれば、 完全に複素数の範囲で指数関数を定義した ことになると思いますが、 どこか間違っている所、抜けてる所とかないでしょうか 4.の前に級数が収束することを示す必要がありますね. 5.で Im(w)∈[0,2π) を仮定した理由は welldefindにする為です だから、本当は 4. → 5.の間にe^zが単周期関数(周期2πi)で あることを示す必要があります 後、知りたいことは、不連続点の分布です わたし自身質問を把握しきれていないかもしれませんが 回答して補足してください mm(_ _)mm

  • 逆関数を用いた問題

    次の値を求めよ √i 解答・・・±(1/√2)(1+i) 逆関数を使うようなのですが・・・何がなんだかサッパリです すぐ手前の例題に、 w=z^2の逆関数を求めよ zとwを交換すると z=w^2 z=0のときw^2 = 0より w=0 z≠0のとき、極形式を用いてz=r(e^(iθ)) (r>0)とおくと w^2 = r(e^(iθ)) = {(√r)e^(i*θ/2)}^2 よってw=±√r(e^(i*θ/2)) したがって、w=z^2の逆関数をw=√zで表すと、 |z|=r≧0、argz=θ とおくとき √z=±√r(e^(i*θ/2)) = ±√r(cos(θ/2) + isin(θ/2)) というものがありました ・・・が、結局逆関数を使うと何を求められるのかがわかりません 試しに真似て計算してみたところ、 w=(√i)^2 wとiを交換すると i=w^2 i=u+viとおくと w^2=u+vi=(√(u+vi))^2 w=±√(u+vi) よってw=(√i)^2の逆関数をw=√iで表すと √i=±√(u+vi) となりましたが・・・1/√2などは何処から出てくるのかorz ご教授、お願いします