• ベストアンサー

逆関数を用いた問題

次の値を求めよ √i 解答・・・±(1/√2)(1+i) 逆関数を使うようなのですが・・・何がなんだかサッパリです すぐ手前の例題に、 w=z^2の逆関数を求めよ zとwを交換すると z=w^2 z=0のときw^2 = 0より w=0 z≠0のとき、極形式を用いてz=r(e^(iθ)) (r>0)とおくと w^2 = r(e^(iθ)) = {(√r)e^(i*θ/2)}^2 よってw=±√r(e^(i*θ/2)) したがって、w=z^2の逆関数をw=√zで表すと、 |z|=r≧0、argz=θ とおくとき √z=±√r(e^(i*θ/2)) = ±√r(cos(θ/2) + isin(θ/2)) というものがありました ・・・が、結局逆関数を使うと何を求められるのかがわかりません 試しに真似て計算してみたところ、 w=(√i)^2 wとiを交換すると i=w^2 i=u+viとおくと w^2=u+vi=(√(u+vi))^2 w=±√(u+vi) よってw=(√i)^2の逆関数をw=√iで表すと √i=±√(u+vi) となりましたが・・・1/√2などは何処から出てくるのかorz ご教授、お願いします

質問者が選んだベストアンサー

  • ベストアンサー
  • gatch_ky
  • ベストアンサー率43% (18/41)
回答No.2

iの極座標形式は i=e^(π/2)*i だよ。

skirby112
質問者

お礼

回答、ありがとうございます 最初からz=w^2 と置けばいいような気もしてきました 逆関数を使う意味って一体・・・

skirby112
質問者

補足

とりあえずとりあえずw=i^2 から逆関数で i=w^2 とし、 i=e^((π/2)*i)として解けました 逆関数を使う意味がわかりません・・・

その他の回答 (2)

  • gatch_ky
  • ベストアンサー率43% (18/41)
回答No.3

逆関数を使うんじゃなくて、 前の例題の結果を使う問題なんだよ。

skirby112
質問者

お礼

なんだってー! 確かにあてはめたら一発でした・・・

  • m0r1_2006
  • ベストアンサー率36% (169/464)
回答No.1

z^2 = i を求めよ.なので, z を極座標で, z = r exp(i theta)  ,r>0 0<= theta< 2pi 実数 と置く. z^2 = r^2 exp(i 2 theta) = i なので, i を複素平面で極座標表示すると i = 1 exp(i pi/2) よって, r^2 = 1 => r>0 より r=1 2 theta = pi/2 + 2 n pi, n は整数 から, theta = pi/4 + n pi z = 1 exp(i pi/4) または 1 exp(i (pi/4+pi)) です. ところで,逆関数を使うってどこ?

skirby112
質問者

補足

回答、有難うございます たしかに逆関数を使う意味がサッパリです・・うーん

関連するQ&A

  • 複素関数、双曲線関数の問題

    関数w=coszで、z=x+yi,w=u+viと置く時,w=coszによってz平面状の直線"x=π/4(-∞<y<∞)"はw平面状の どのような図形に移るか (解答…双曲線2(u^2)-2(v^2)=1の右半分) u+vi=cos(x+yi)   =cosx・cos(yi)-sinx・sin(yi)   =cosx・cos(hy)-sinx・sin(hy) と直したのですが、ここからxの式をどう導くのかがわかりません そのままx=π/4を代入しても、 u+vi=(1/√2)cos(hy)-(1/√2)sinhy となり、解答の式に持っていくことができません ご教授、お願いします

  • 複素関数の問題です

    z=(1+i√3)/2 とおく。 (1)z=e^(iθ) を満たすθ(0≦θ<2π)を求めよ |z|=√{(1/2)^2+(√3/2)^2}=1 極形式:z=cos(π/3)+isin(π/3) arg z=θ=(π/3)+2nπ (2)z^2009+z^2+1を求めよ (1)は恐らく解けたのですが、(2)が解けません・・べき関数を使うのでしょうか? 答えがないので、どなたか添削と回答をよろしくお願いします

  • 複素数の極形式のマイナスがつく場合についてです。

    複素数の極形式のz=r(cosθ+isinθ)、r=lzl、θ=argz にてcosθとisinθの頭にマイナスがついても(例:z=r(cosθーisinθ)やz=r(ーcosθ+isinθ))それは複素数の極形式といえるんですか?

  • 複素数平面の問題なのですが

    複素数平面上で z0=(√3+i)(cosθ+isinθ) z1=4{(1-sinθ)+icosθ}/(1-sinθ)-icosθ z2=-2/z1 の表す点をそれぞれP0,P1,P2とする。(0°<θ<90°) 偏角は-180°以上180°未満とする。 この問題で|z0|=2,argz0=30°+θ |z1|=4,argz1=90°+θ また|z1|/|z0|=2,argz1/z0=60°,P1P0=2√3 は求めることができたんのですが次の問題がどうにも解けなくて困っています。 原点O,P0,P1,P2の4点が同一円周上にある場合を考える。このとき、∠OP2P1を考えると argz1-z2/z2=-○○°・・・(1) であるから、 ○cos2θ-○=0・・・(2) が成り立つ。 ここでz1-z2/z2を整理したときに8cosθ+isin2θ-1となることから、(1)の値は8と1が入るという予想が立ち そこから(1)の偏角が-90となるということは考えられるのですが、きちんとした考え方がわかりません。 どなたか、しっかりとした回答の根拠を教えていただけませんでしょうか?お願いします。

  • 双曲線関数の問題

    関数w=coszで、z=x+yi,w=u+viと置く時,w=coszによってz平面状の直線"x=π/4(-∞<y<∞)"はw平面状の どのような図形に移るか (解答…双曲線2(u^2)-2(v^2)=1の右半分) 2(u^2)-2(v^2)=1 (より漸近線・・・y=±x) は導き出せたのですが、 なぜ"右半分"なのでしょうか・・・?

  • 次の問題がわかわないので教えてください。

    次の問題がわかわないので教えてください。 複素数ZとZ(√3+i)の関係を示しなさい。という問題なのですが、 計算すると、Z(cos30+isin30)みたいな感じになり、Zに対して正方向に30度回転させて グラフになるみたいなのですが、どうしてこうなるか分かりません。 なんとなく極形式を使った問題なんだろうなということはわかります。 ですが極形式であるr(cosθ+isinθ)に当てはめてみると、 まずrを求めるとピタゴラスの定理より、 r^2=√3^2+i^2でr=√2となりました。 今度は、cosθ=(√2/√3) isinθ=(√2/i)となり、 答えと合わないのですが、どのように考えれいいのでしょうか? このような答えになるまでの解答を教えてください。 お願いします。

  • tanの逆関数を対数で表す問題

    例えばarcsinの逆関数場合 ω = arcsinz とおけば、 z = sinω であり、オイラーの公式より、 z = {e^(iω) - e^(-iω)}/2i … (1) これを変形して {e^(iω)}^2 - 2iz{e^(iω)} - 1 = 0 この方程式を解いて e^(iω) = iz ± √(1-z^2) 指数関数と対数関数の関係より、 ω = arcsinz = 1/i*log{iz ± √(1-z^2)} と表すというもので、 arccosの場合もω = arccoszとすれば z = {e^(iω) + e^(-iω)}/2 … (2) これを用いて同様に計算を行うと ω = arccosz = 1/i*log{z ± i√(1-z^2)} となると参考書に書いてありました。 ここでarctanに関してなのですが、三角関数の公式 tan = sin/cos … (3) (3)に(1), (2)にを代入して、 z = tanω = [{e^(iω) - e^(-iω)}/2i] / [{e^(iω) + e^(-iω)}/2]     = (1/i) * [{e^(iω) - e^(-iω)} / {e^(iω) + e^(-iω)}] … (4) となると思うのですが、 この(4)式を用いてarcsinω、arccosωと同様にarctanωを求めたいのですがうまくいきません。 (4)式をe^(iω)について解くにはどのように変形すればいいのでしょうか。 もしくはこの方法自体が間違っているのでしょうか。 長々とすみません。 どなたか分かる方がいればアドバイスなどよろしくお願いします。

  • 数学の問題です。どなたかお願いします。

    αを-π≦α<πを満たす定数とし,次のような複素数平面上の図形C1,C2を考える。 C1:zが複素数平面上の円|z|=1上を動くとき,w=z^2+z+1を満たす点wがえがく図形 C2:tが正の実数を動くとき,w=t(cosα+isinα)を満たす点wがえがく図形 (1)z=cosθ+isinθ(-π≦θ<π)とおくとき,次の(ア),(イ)に答えよ。 (ア)次の式を満たすf(θ)を求めよ。 z^2+z+1=f(θ)(cosθ+isinθ) (イ)θがθ=-πから出発して,-π≦θ<πの範囲をあともどりすることなく動くとする。この間にw=z^2+z+1を満たす点wが2回通過する点が唯一つ存在することを示し,その点を求めよ。 (2)C1とC2の共有点の個数を調べよ。

  • 数学 極刑式 問題

    z=1ー√6iの極刑式をz=r(cosθ+isinθ)とすると、r=√□、cosθ=1/√□ □に入る答えを教えてください

  • なぜ√zの定義には2葉のリーマン面が要るの?

    複素関数f(z)=√zでなぜリーマン面なるものを導入するのか分りません。 実関数の例ではf:R→2^R;f(y)={±√y}などが2価関数ですよね。この時の分枝は (ア) g_1(y):=√yとg_2(y):=-√y や (イ) g_1(y):=√y if 0≦y<1,-√y if 1≦yとg_2(y):=-√y if 0≦y<1,√y if 1≦y など色々,無数に定義できますよね。 そして出来るだけ不連続点や微分不能点が少なくなるように分枝を選ぶしきたり(?)なのですよね。よってf(y)={±√y}の例では(ア)を分枝とする。 さて,f(z)=√zに話を戻すと,普通に考えて,√zは極座標で定義されて2つの点{√|z|(cos(θ/2)+isin(θ/2)),√|z|(cos(θ/2+3π)+isin(θ/2+3π))}を表しますから (z=0以外定義域の各点の像が単集合とならず複数元を持つ集合となる場合に多価関数と呼ぶ) f:C→2^Cを √z:={√|z|(cos(θ/2)+isin(θ/2)),√|z|(cos(θ/2+3π)+isin(θ/2+3π))} if z≠0, {0} if z=0. 但し,-π<θ≦π. と定義すればいいのではないかと思います。 この時,簡単なために{z∈C;|z|=1}で話を進めると, 連続性に関しては z=-1の時,θ=πで lim_{z→-1}√z=lim_{θ→π-0}{√|z|(cos(θ/2)+isin(θ/2)),√|z|(cos(θ/2+3π)+isin(θ/2+3π))} =lim_{θ→π-0}{√|-1|(cos(θ/2)+isin(θ/2)),√|-1|(cos(θ/2+3π)+isin(θ/2+3π))} ={±i}=f(-1) であり,他方 lim_{θ→-π+0}{√|z|(cos(θ/2)+isin(θ/2)),√|z|(cos(θ/2+3π)+isin(θ/2+3π))} ={±i}=f(-1) なので,f(z)=√zはz=-1で連続。 lim_{z→0}f(z)=lim_{z→0}{√|z|(cos(θ/2)+isin(θ/2)),√|z|(cos(θ/2+3π)+isin(θ/2+3π))}={0}=f(0). となるのでz)=√zはz=0でも連続。 微分可能性に関しては d/dzf(z)|_{z=-1}=lim_{C∋h→0}(√(-1+h)-√-1)/h =lim_{R∋h→-0}{[√|z|(cos((π+h)/2)+isin((π+h)/2))-|z|(cos(π/2)+isin(π/2))]/h,[√|z|(cos((π+h)/2+3π)+isin((π+h)/2+3π))-√|z|(cos(π/2+3π)+isin(π/2+3π))]/h} ={±i/2} 同様にlim_{R∋h→+0}の場合も lim_{R∋h→+0}{[√|z|(cos((-π+h)/2)+isin((-π+h)/2))-|z|(cos(-π/2)+isin(-π/2))]/h,[√|z|(cos((-π+h)/2+3π)+isin((-π+h)/2+3π))-√|z|(cos(-π/2+3π)+isin(-π/2+3π))]/h} ={±i/2}となるのでf(z)=√zはC\{0}で微分可能となります。 これではどうしてダメなのでしょうか? どうしてarg(z)は(-π,π]と(π,3π]のわざわざ2価関数であるとして,2葉のリーマン面(C\{0})^2が必要なのかわかりません。 1葉の面に2つとも載せたらどういう不都合が起こるのでしょうか?