• ベストアンサー
  • 困ってます

tanの逆関数を対数で表す問題

例えばarcsinの逆関数場合 ω = arcsinz とおけば、 z = sinω であり、オイラーの公式より、 z = {e^(iω) - e^(-iω)}/2i … (1) これを変形して {e^(iω)}^2 - 2iz{e^(iω)} - 1 = 0 この方程式を解いて e^(iω) = iz ± √(1-z^2) 指数関数と対数関数の関係より、 ω = arcsinz = 1/i*log{iz ± √(1-z^2)} と表すというもので、 arccosの場合もω = arccoszとすれば z = {e^(iω) + e^(-iω)}/2 … (2) これを用いて同様に計算を行うと ω = arccosz = 1/i*log{z ± i√(1-z^2)} となると参考書に書いてありました。 ここでarctanに関してなのですが、三角関数の公式 tan = sin/cos … (3) (3)に(1), (2)にを代入して、 z = tanω = [{e^(iω) - e^(-iω)}/2i] / [{e^(iω) + e^(-iω)}/2]     = (1/i) * [{e^(iω) - e^(-iω)} / {e^(iω) + e^(-iω)}] … (4) となると思うのですが、 この(4)式を用いてarcsinω、arccosωと同様にarctanωを求めたいのですがうまくいきません。 (4)式をe^(iω)について解くにはどのように変形すればいいのでしょうか。 もしくはこの方法自体が間違っているのでしょうか。 長々とすみません。 どなたか分かる方がいればアドバイスなどよろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数2729
  • ありがとう数6

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • Tacosan
  • ベストアンサー率23% (3656/15482)

普通に考えれば #1 でいわれる通りの方法でしょうが, やっていくとわかるように e^(iω) ではなく e^(2iω) を求めるのがきっと賢い. 別法: z = tan ω とすると 1+z^2 = 1/cos^2 ω, つまり cos^2 ω = 1/(1+z^2). ここから sin^2 ω = z^2/(1+z^2), sin ω cos ω = z/(1+z^2). したがって e^(2iω) = [(1-z^2) + 2iz]/(1+z^2) なので ω = (1/2i)log([(1-z^2) + 2iz]/(1+z^2)).

共感・感謝の気持ちを伝えよう!

質問者からのお礼

なるほど、あの関係式を使えばよかったのですか… 三角関数の重要な公式なのに失念しておりました。 うまくまとまる解法ですね。 わかりやすい回答ありがとうございました!

関連するQ&A

  • 逆関数の問題です。

    (1) x>0 とすると arctan 1/x + arctan x = π/2 を示せ。 (2) arccos x = sin 4/5 をみたすxをもとめよ。 という問題なのですが、解けませんでした。 どなたか解答とその導入過程を教えてください。 わたしの考えたことを少し載せます。間違っていたら申し訳ありません。 (1) acrtan 1/x =α, arctan x = βとすると、求めるものは α+β  arctan 1/x =α より tan α = 1/x (-π/2 <α< π/2) arctan x = β より tan β = x (-π/2 <α< π/2) よって tan(α+β)の定義域は -π<α+β<π …(ここからどうするのかがわかりません) (2) この問題も(1)と同様に arccos x = α, arcsin 4/5 = β として cosα、sinβの値は出せますが、どうすればよいのか訳がわかりません。 ※arcsin θ =sin^-1 θ

  • 指数関数の両辺の対数をとる・・・の意味

    高校数学IIの分野の指数関数、対数関数に関する質問をします。 よく問題の解説中で、指数関数の「両辺の対数をとって…」という表示があり、式変形をしていますが、この意味はどういうことなのでしょうか?  例えば、1次方程式の両辺の対数をとっても方程式は成立するのでしょうか、それとも両辺の対数をとることができるのは指数関数だけなのでしょうか?  例えば (1)[指数関数の逆関数を作る] (2)[指数関数の両辺の対数をとる] ←(1)と(2)は同じ結果が表示されると思いますが、どのように関連しているのでしょうか?  以上、対数という概念を理解したいので質問します。なにか意見があれば、よろしくお願いします。

  • 指数関数から対数関数の変形

    指数関数から対数関数の変形 y=e^ax を x=logの形にしたいのですが… y=e^x x=logx とできるのですが、aがつくとどうもよく分かりません。

その他の回答 (1)

  • 回答No.1
  • proto
  • ベストアンサー率47% (366/775)

どううまくいかないのでしょうか? 両辺にi*(e^(iw)+e^(-iw))を掛けて分母を払ってから、さらに両辺にe^(iw)を掛ければ、e^(iw)についての2次方程式になります。 はっきり言って、sinやcosの場合より簡単かも。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

説明不足ですみません。 僕もprotoさんが言われているように式を変形してみて、 (iz-1){e^(iω)}^2 + iz + 1 = 0 というふうになり、 これを解の公式または因数分解で解けばいいということだと思ったのですが、 なにやらうまい値がでてこなくて、質問してしまいました。 今から再度やってみます。 ありがとうございました!

関連するQ&A

  • 対数関数について

    対数関数の法則で log e(A*B) = log e(A) + log e(B) (eは底です) というのは、 指数関数のe^A * e^B = e^(A+B) ということから 感覚的にすぐ分かるのですが、 底の変換公式 log a(b) = log c(b) /log c(a) これを指数関数で言うとどんなかんじでしょうか? 底の変換公式の証明は知っています。 感覚的にCがどこから出てくるかが なんとなくもやもやします。

  • 対数関数のグラフの描き方

    ※logのあとの[]は、底を表しています! たとえば、y=log[2]x だったら、y=2のx乗(指数関数)の逆関数をとると考えて、 まずは、指数関数のグラフを書き、y=xに対象なぐらふを 書いているのです。 値をとるのも難しそうですし。 なにかよい方法ありますでしょうか? この方法でやると、  y=log[2](1-x) y=log[1/2](-x) y=log[2]4x などを描こうとすると詰まってしまうのですが。 むしろ描き方が分かりませんってかんじです。 お願いします!!

  • 逆関数と共有点の問題

    こんばんは。以下の問題で悩んでいます。 ----------------------------------------------------- f(x) = e^(x-c) (cは定数) の逆関数をg(x)とする。 (1) g(x) を求めよ。 (2) y = f(x) と y = g(x) のグラフの共有点の個数を求めよ。 ----------------------------------------------------- (1) y = e^(x-c) を x = の式に直すことから始めようと思ったのですが,まずここからできません。 関数の値域は,指数関数ですから y > 0 かな,と分かるのはこれくらいです。 両辺に底がeの対数をとっても進まないし…どうすれば良いでしょうか。 (2) これは y = x との交点を求めれば良いので,(1)が分かればできるような気がするのですが…。  詳しい方おりましたら,おしえてください!

  • 逆関数がさっぱりわかりません

    逆関数がさっぱりわかりません。教えて下さい。 1.y=2^(2x)+2*2^x 2.y=(2*log(x-2))/log2 対数は自然対数 よろしくお願いします。

  • 指数関数の導関数の公式

     「指数関数 x=e^y は対数関数 y=logx の逆関数だから、逆関数の導関数の公式と対数関数の導関数の公式 dy/dx=1/x を用いるとdx/dy=1/(dy/dx)=1/(1/x)=x=e^yとなり、指数関数の導関数の公式(e^y)'=e^yが得られる、○か×か」という問題がわからないのですが、教えて下さい!

  • ラプラス逆変換について

    arccot(s/π)の逆変換を求めたいのですが、cot(s/π)=1/tan(s/π) arccot(s/π)=1/arctan(s/π)...(1) =arccos(s/π)/arcsin(s/π)...(2) . ∫{arccos(s/π)/arcsin(s/π)}ds =log{sin(s/π)}...(3) と解いていったのですが行き詰ってしまいました。 この後どのようにすれば解けるのでしょうか。

  • 指数関数と対数関数の違い

    指数関数と対数関数の違いは何ですか?

  • この逆関数の求め方は間違っていますか?

    「y=sinhx={e^x-e^(-x)}/2の逆関数を求めよ」 という問題が分かりません. 与式を変形して2y=e^x-e^(-x) e^2x-2ye^x-1=0 e^x>0を考慮して,解の公式よりe^x=y+√(1+y^2) 両辺の対数をとって(表現が間違っているかもしれません) x=log{y+√(1+y^2)} yを変数xについての関数とするために入れ替えて y=log|x+√(1+x^2)| (与式の値域より右辺の真数>0となるよう,絶対値記号を用いています.) とすれば解答と一致します. ですが,次の方法で解こうとすると答えが変わってしまいます. y=f(x)=sinhx={e^x-e^(-x)}/2 f'(x)={e^x+e^(-x)}/2>0より,f(x)は増加関数 逆関数をy=f^{-1}(x)とおきます. 逆関数の導関数[f^{-1}(x)]'=2/{e^x+e^(-x)}=2e^x/(e^2x+1)=2(e^x)'/(e^2x+1) この導関数を積分してf^{-1}(x)=2tan^{-1}(e^x)+C 関数y=f(x)は(0,0)を通るから,逆関数も(0,0)を通る.このことからC=-π/2を得る. よってf^{-1}(x)=2tan^{-1}(e^x)-π/2 ですが,これは先ほどの解答とは異なる気がします. 後半の解法はどこが間違えているのですか?

  • 対数関数の微分

    いつもお世話になっています。 微分のところを勉強していて  x^n → n x^(n-1)  sin(x) → cos(x)  e^x → e^x などは導関数の定義から求めることができました。 しかし、教科書では対数関数の微分が log(x) → 1/x なることだけは 逆関数の微分を使って求めています。 そのやり方は納得できたのですが、  lim {log(x+h) - log(x)}/h から変形して求めることはできないのでしょうか?

  • 微分積分についての質問です

    下の2問についての正誤をお願いします。 もし間違っているなら解説をお願いいたします。 (1) 対数関数x=log(2)yの逆関数である指数関数y=2^xの定義域は(0,∞)であり、値域は(-∞,∞)であり、狭義単調減少である (2) 指数関数y=10^xの逆関数である関数y=log(10)xの定義域は(0,∞)であり、狭義単調増加である。またその値域は(-∞,∞)になる