• ベストアンサー
  • すぐに回答を!

微分方程式の問題です。

微分方程式の逆演算子の問題なんですが、 (D^2+D+1)y=x^3-2 という問題なんですが、まず特性方程式でひとつの特殊解をみつけて 次にもうひとつの特殊解を見つけるわけなんですが y=(x^2-2)/(D^2+D+1) と変形したんですが因数分解も出来なくどうすればいいのかわかりません。 y=e^(-x/2) (Asin(3^1/2*x /2)+Bcos(3^1/2*x /2))+x^3-3x^2+4 の答えになります。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数66
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • info22
  • ベストアンサー率55% (2225/4034)

>(D^2+D+1)y=x^3-2 こういう類の微分方程式の解法は 特殊解と 右辺をゼロと置いた斉次方程式(D^2+D+1)y=0…(A)の一般解 を加え得られます。 最初の特殊解は方程式を満たす解を何でも1つだけ見つければいいわけで、右辺を見てy=ax^3+bx^2+cx+dの形だと分かりますので代入して各次の係数比較からa,b,c,dを決めてやればいいですね。この特殊解には任意定数は入りません。 (A)の一般解は特性方程式(Dをsで置き換えた式) s^2+s+1=0から求めます。 s=(-1±i√3)/2 から、斉次方程式の一般解は y=e^(-x/2){A*sin{(√3)x/2}+B*cos{(√3)x/2} が出てきます。 A,Bは任意定数ですね。任意定数だから一般解と呼ぶわけです。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 微分方程式の演算子法

    dy/dx=Dy,d^2y/dx^2=D^2y Dを演算子とします。 (2D^2+2D+3)y=x^2+2x 解:exp^(-1/2x){Asin(√5/2)x+Bcos(√5/2)x}+1/3x^2+2/9x-16/27 の特殊解の求め方がわかりません。 特性方程式が因数分解できない(複素数になる)と、 公式に当てはめられず解けなくなってしまいます。 どなたか教えてください。

  • 微分方程式

    微分方程式の勉強をしているのですが、 本の微分方程式を解く例題で y''-2y'+y=xe^x 特性方程式s^2-2s+1=0は2重解s=1をもつ。これより補助方程式の一般解は y=e^x(Ax+B) である。 与方程式の右辺を微分して生ずる関数は、xe^x,e^xであるが、これらは 上の一般解に含まれている。このような場合特殊解を求めるために、xe^xに特性方程式の解1の重複度2だけxをかけて、 y1=ax^3e^xとおくと y1'=a(x^3*e^x+3x^2*e^x),y1''=a(x^3*e^x+6x^2*e^x+6xe^x) これらを与方程式に代入すると6axe^x=xe^xよりa=1/6 よってy=e^x(Ax+B+x^3/6) とあるのですが、上文にある重複度っていうのがわかりません。 例えば、特性方程式の解が2±i(虚数解)で、これより 補助方程式の一般解はy=e^(2x)(Asinx+Bcosx) 与方程式の右辺がe^(2x)のときの重複度はどうやって考えれば いいでしょうか?

  • 微分方程式

    問題を解いていて少し疑問に思ったので質問させてください。 u=u(t)を未知関数として A(du/dt) + B*u = E*sin(ωt) について、一般解を求め、その後初期条件u(0)=u0のもとで解け。 ただし、A,B,E,ωは正定数とする。 上記のような問題なんですけど、これは一階微分方程式ですよね? 一般解は、二階微分方程式では特性方程式によって求めた基本解と、未定係数法で求めた特殊解を重ね合わせて作るという印象があります。 このような一階微分方程式の場合はどのように解けばいいですか? 二階の時と同じように解いてよいならば、特性方程式の解から基本解を作る時など、二階微分方程式の時と同じようにやってよいものか疑問です。 特殊解も未定係数法もつかってよいのでしょうか。 詳しい方いましたら教えてください。

その他の回答 (1)

  • 回答No.2
  • fjfsgh
  • ベストアンサー率16% (5/30)

>y=(x^2-2)/(D^2+D+1) と変形したんですが因数分解も出来なくどうすればいいのかわかりません。 演算子法 1/(D^2+D+1)=1+(-D-D^2)^2+(-D-D^2)^3+… を使っても、特殊解が見つかります。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 定数係数線形微分方程式で右辺がsin、cosの場合

     定数係数線形微分方程式で右辺がsin、cosの場合、その特性方程式の解が実数の場合には、yo = Asin(ax+b)+Bcos(ax+b)の形の特殊解があり、虚数解iaをm重根もつ場合には、yo = x^m{ Asin(ax+b)+Bcos(ax+b) }の形の特殊解があることは理解できました。  もし、特性方程式が3次以上でその解が実数と虚数解の両方を持つ場合には、その特殊解はどのような形になるのでしょうか?  例えば、 y'''-y''+y-1=3sin(2x+1) の場合、その特性方程式は (t-1)(t^2+1)=0 から t= 1,±i となると思います。この場合の特殊解はどのような形になるのでしょうか?アドバイスいただければと思います。宜しくお願い致します。

  • 二階微分方程式の問題

    y"+4y=2xsin2x 解:Asin2x+Bcos2x-1/4x^2cos2x+1/8xsin2x の問題なのですが、 補助方程式y"+4y=0の一般解は特性方程式から、 Asin2x+Bcos2xとわかるのですが。 特殊解の-1/4x^2cos2x+1/8xsin2x の求め方がわかりません。 どなたか教えてください。

  • 微分方程式の問題です。

    微分方程式の特性方程式による解法についてですが、重根λsをもつとき、基本解系にte^(tλs)が含まれるのはなぜですか? 代入したら成り立つからというのではなく、どういう理論で出てきたのか知りたいです。 もしかしたら、先人が目の子で探したのかもしれませんが・・・

  • 微分方程式

    次の微分方程式を解けという問題がわかりません。 y''+4y=sin2x 特性方程式s^2+4=0よりs=±2i(虚数解) 補助方程式の一般解はy=Asin2x+Bcos2x 与方程式の右辺を微分して生じる関数は2sin2x,2cos2xであるが、 これらは上の一般解に含まれている。重複度は2なので、 特殊解を求めるために、 y1=ax^2*sin2xとおく y1'=2a(xsin2x+x^2cos2x) y1''=2a(sin2x+4xcos2x-2x^2sin2x) これらを与方程式に代入すると 2asin2x+8axcos2x-4ax^2sin2x+4ax^2sin2x=sin2x となってしまって解けませんでした。どこを直せばいいでしょうか?

  • 微分方程式

    カテゴリーが数学か物理かで悩みましたが 物理の問題の中の微分方程式なので物理と選びました 問題の解答で x"2-x"1=-((m+M)/mM)k(x2-x1-L)  (”は二階微分) 一般解はA,αを任意定数としてx2-x1=L+Asin(ωt+α) ω==√((m+M)/mM)k) と書いてあったのですが これは x2-x1=y、((m+M)/mM)k=uとして y”=-uy+uL 特性方程式より λ^2+u=0 λ=±ui 同時方程式の一般解は y=C1cos(u)+C2sin(u) まではわかるのですがuLの処理の仕方、また解答のような答えにならないのですがどこが間違っているのでしょうか? お願いします

  • 微分方程式と因数分解はどこか関係がありますか

    二次方程式は因数分解ができれば答えが出ますが、微分方程式にも似たようなことがあるのでしょうか。

  • 微分方程式を満たすことを示す問題がわかりません><

    物理の問題でAは振幅 問題はX=asin√kt/m+bcos√kt/mの解がmX=-kx (Xはx方向の2回微分(加速を示す))の微分方程式を満たすことを示せ。というものなんですが、さっぱりわかりません><わかるひといたら教えてください。お願いします。

  • 非同次微分方程式の特殊解について

    非同次微分方程式の特殊解は Q(x)=Ax^n あるいは Q(x)=Ax^n + Bx^(n+1) +…(n次多項式の場合) ・特性方程式の解に0が無ければ、η(x)=kx^n + lx^(n+1) +…+m ・特性方程式が単解0をもてば、  η(x)=x(kx^n + lx^(n+1) +…+m) ・特性方程式が重解0をもてば… などη(x)の置き方がいろいろありますよね。 他にも、三角関数の時や指数関数の時など。 こういった特殊解は、覚え方などあるのでしょうか? 自力で丸覚えするしかないのでしょうか? 解き方は分かるのに、特殊解をη(x)=…なんだったっけかな…と思うことがしばしばあります。 覚え方があるのなら教えて下さい。

  • 微分方程式

    二階の微分方程式について質問があります。 例えば、 x''+x'+2x=0 これを解くとするじゃないですか。 すると、特性方程式の根は-1±i√7となるので、 一般解はx=C(exp-y)cos(√7)y+c(exp-y)sin(√7)y となりますよね? では、 x''+x'+2x=α と=0ではなく=定数 と式が与えられているときはどのようにとけば良いのでしょうか? =0という問題は色々あるのですが、=定数というのはまだ見たことがありません。 また特殊解はどのように求めますか?

  • 微分方程式

    下記の微分方程式の解き方を教えてください。D=d/dxは微分演算子です。 (1)(D^2+6*D+9)*y=0 (2)(D^4-6*D^3+12*D^2-8*D)*y=0 宜しくお願いします

専門家に質問してみよう