• ベストアンサー

ピタゴラス数(90度)から???数(60度)へ

y_akkieの回答

  • y_akkie
  • ベストアンサー率31% (53/169)
回答No.4

一般解とまではいきませんが、その一部となる整数解の組み合わせの一般式を考えて見ましたので、宜しければ参考にして下さい。 まず、b≧cとし、b + c = p, b - c = qとおくと、b = (p + q) / 2 、c = (p-q) / 2と表せるので、これらを与式の右辺にこれらを代入して計算すると、p^2 + 3q^2 = 4a^2の関係式を得る事になります。 ここから、3q^2 = 4a^2-p^2 = (2a-p)(2a+p)より、 3q^2 = (2a-p)(2a+p)となります。 ここで、右辺の因数を当てはめて次々に解を求めていかなければなりません。また、qの素因数によって様々なケースに分かれてきます。 ここでは、その一つのケースだけに留めておきます。 そして、 (2a-p) = 3 (2a+p) = q^2 を満たすとき、 a = (3+q^2)/4 p = (q^2-3)/2 となります。 ここで、aが整数になるためには、q = 4k+1である必要があるので、 a = 4k^2+2k+1 p = 8k^2 +4k -1 q = 4k+1 となり、さらに b = 4k^2 + 4k c = 4k^2 - 1 となります。 以上を纏めますと、 a = 4k^2+2k+1 b = 4k^2+4k c = 4k^2-1 が与式を満たす(a,b,c)の整数解の一部になります。 なお、k = 1のとき、 a = 7 , b = 8 , c = 3を得る事になります。 これをExcelでやると、3辺の長さが整数値であり、かつ1つの角度が60度 である三角形が次々に求まっていきます。

kkkk2222
質問者

お礼

まだ読んでないんですが お礼遅れてますので とりあえず 謝謝 今から熟読しますが なんか 私にも読めそうな・・・ 読んだら なんとか欄でRESします 

kkkk2222
質問者

補足

えー 何から書いてよいのか迷います。 凄く満足しています。凄く嬉しいです。見た覚えのある数が出てきました。 大切にFILEを保管します。 私にでも理解(技法は経験からでしょうから感心するしかありませんが)出来た事も。 堪能した(という思い)と、もう少し知りたい(という思い)と半々です。 <もう少し知りたい>けど理解できるかな(という思い)があります。 <もう少し知りたい>理由のひとつは正三角形が出てこない と 出会った組が もう少しあったような・・・もちろん部分解ですから・・・ この欄は一度書いたらもうRESできないので、y_akkie様が新情報を得られたら このスレッドでなくともお願いします。・・・(誠に強欲)(違反かな?) エクセルで追試しましたら(24、21、15)があって旧友にであった様な思いです。 (御免なさい)q=4k-1の時も成り立つ様だったので、やってみましたら         (8、13,15)にも出会えました。(3,3,0)は要検証です。 計 3組だった様にも 思えます。   感謝の言葉がみつかりません。 ありがとうPOINT出したいのですが、もうすこし・・・ゴメン 書き忘れた事がありそうですが、いったん終わります。

関連するQ&A

  • (60度)数、完成一歩手前で

    ピタゴラス数から話が始まって、 それでは60度の場合は?ということで、 一般解を複数の方から教えて頂きました。もう少し数学的に書くと、 三辺が共に整数で,どこかの角が60度なる三辺(a,b,c)の組をもとめよ。です。 余弦定理より a^2 = b^2 + c^2 - bc を満たす整数(a,b,c)の組を求める事になります。 解は a=k(m^2-mn+n^2) 、b=k(m^2-n^2) 、c=k(2mn-n^2) a=m^2-mn+n^2 、b=m^2-n^2 、c=2mn-n^2  で良いと思うので このあとはこれで書きます。 エクセルで計算して見ると  m>n>0の条件だと  (1、1、1)、(2、2、2)等の自明な解が出ません。(3、3、3)は出ました。 m>n>0の条件をはずし、 絶対値をとって見ました。         a=| m^2-mn+n^2|  、b=| m^2-n^2|  、| c=| 2mn-n^2| すると、(1、1、1)が出ましたのでK倍を適用ば解決、そしてm>n>0では出なかった解まで出ました。 ところが、困った事に無縁解とも呼べる、120度に対応する解まで出てきました。なんらかの方法で無縁解を除けばよいのですが、その制約条件が分かりません。 よろしく、お願いします。 尚、解の出し方は’’ピタゴラス数(90度)から???数(60度)へ”です。 3頁ほど前の925です。

  • ピタゴラス数に対してトレミー数(造語)を考える

    ピタゴラスの定理を満たす自然数、つまり、整数辺の直角三角形の3辺は、ピタゴラス数と呼ばれます。 それは、整数辺長方形で対角線も整数のものを考えることと同じです。 ところで、整数辺四角形で、対角線も整数になるものは、存在はするようです。 http://mathworld.wolfram.com/RationalQuadrilateral.html しかし、一般解がどうなるのかは知りません。(これも知っている方がいれば教えてください) すると、気になるのは、円に内接する整数辺四角形で、対角線も整数になるものは、存在するのでしょうか?ただし、整数辺の直角三角形の斜辺を張り合わせてできる四角形は、自明なので除くものとします。 代数的に言いかえると、平面上の4点間の6種類の距離は、六斜術とかCayley–Menger determinants(必要であれば検索してください)という関係式を満たすのですが、 さらにトレミーの定理の関係式を満たすような6つの自然数の組は存在するのでしょうか?

  • ピタゴラス数の生成とは?

    ピタゴラス数とは  x^2+y^2=z^2 を満たす自然数(もしくは整数)x、y、zの組のことです。 そのピタゴラス数を(3,4,5)から出発して、次々と生成していく方法があるようです。 http://hamada.ddo.jp/home/math/pythagoras.aspx や http://www.hokuriku.ne.jp/fukiyo/math.html を参考にしてください。 しかし、そこでは証明は述べられていませんし、単なる推測として書かれているだけです。 ピタゴラス数の生成について、もっと正確に主張できることはあるのでしょうか? 証明の概略や、証明が書いてあるweb siteがあれば教えていただけないでしょうか? また、 x^2+y^2=z^2 はxyz空間の曲面とみなすことが出来ます。 その幾何学的な観点では、ピタゴラス数の生成はどういった意味を持つのでしょうか?

  • ピタゴラス数となる組み合わせは無限個ある?

    いわゆる「ピタゴラス数」となる3つの整数の組み合せが無限にあることは証明できますか? 自分なりに考えてみて、「2N+1」の平方根が整数となる √2N+1, N, N+1 の組み合わせを考えればよいらしいことはわかり、素人目の直感ではこれで問題なさそうなのですが、この3つの数が1以外の公約数を持たない(「互いに素である」という表現でよいのかな?)ことをどう証明するのかがわかりません。 また、上記以外の組み合せ(例えば、N = 8 のときの、√4N+4, N, N+2、N = 12 のときの、√6N+9, N, N+3 など)を検討してみたところ、どれも1以外の公約数を持つ(=他のピタゴラス数と同比率に約分できる)ようなのですが、これも証明できるでしょうか? # 中学生レベルかもしれませんが。  

  • 原始ピタゴラス数

    自然数 m, n ( m > n )に対して m,nは互いに素で一方は奇数,他方は偶数とし、 (m^2-n^2)^2+(2mn)^2=(m^2+n^2)^2  とすれば原始ピタゴラス数が得られるみたいですが、コレはすべての原始ピタゴラス数を網羅していますか? しているのであれば、その証明方法を、していないのであれば、すべての原始ピタゴラス数を得る一般的な方法を教えてください。文章が雑で、あつかましい聞き方になってしまいましたが、どうかよろしくお願いします。m(-_-)m

  • ピタゴラス数と整数論

    ピタゴラス数 x=m^2-n^2、y=2mn、r=m^2+n^2は もちろん必要十分と思いますが 必要条件がしりたいのです 要するに どうやってこの式が出てきたのか です 当方は整数論の知識は皆無です 整数論の知識なしでも理解できれば嬉しいのですが 整数論の知識が必要でも’’はしり’’だけでも教えてください 中学生の頃初めて知って、それ以来何度も出会いますが 証明は見た事がありません NETで調べたら深入りしそうで検索した事はありません x=(1-t^2)/(1+t^2), y=2t/(1+t^2)と酷似しているのが 魅力です よろしくお願いします

  • そもそも、ピタゴラスの定理って定理なのでしょうか?

    そもそも、ピタゴラスの定理って定理なのでしょうか? いいかえると、真実なのでしょうか? これは、実は簡単にわかります。証明できません。 なぜなら、非ユークリッド幾何学という反例があるから。 だから、ピタゴラスの定理っていうのは、定理ではなくて、 普通のユークリッド幾何学を展開していく上での、仮定とか前提と考えたほうがいいと思います。 ではなぜ、世の中にたくさんある「ピタゴラスの定理の証明」なるものはなんなのでしょうか? それは、ユークリッド幾何学を特徴づけるピタゴラスの定理よりも、 よりも基本的な公理を仮定していなければなりません。 一般的には、第五公準(平行線は唯一唯一つ)ってのがそうだと思われます。 しかし、その前に、点とか直線とか、距離とか、角度とか、合同とか、たくさんの概念が定義されなくてははなりません。 ところで、数学基礎論では、まず、集合とその間の演算を公理的に定義し、また、自然数と和や積を定義します。 それによって、数論の基本的な結合法則、可換法則、分配法則といったものも、「証明できる」ものになります。 1+1=2というのも「証明できる」ものになります。 同じようにしていけば、ピタゴラスの定理って基礎論的に、公理的に、「証明できる」定理なのでしょうか? 実は、「幾何学基礎論」という本を軽く読んだり、いろいろ検索してみたのですが、ピタゴラスの定理は載ってませんでした。 もしかして、ピタゴラスの定理っていうのは、基礎論的にも、公理的にも、「証明されていない」ものなのでしょうか? ちなみに、sinθ, cosθを、無限級数の和として定義してやって、 それによってユークリッド幾何の回転を定義し、sin^2θ+cos^2θ=1となるので「証明できた」というのは、たぶん、万人は認めないと思います。

  • フェルマーの定理の式でn=-1,-2のときは?

    x^n+y^n=z^nの自明でない整数解を求める問題があります。 n≧3のときには、存在しません。フェルマーが予想し、ワイルズが証明しました。 n=2のときには、ピタゴラス数といってたくさん解がありますが、たとえば、 d , m , n を任意の自然数として, x = d(m^2 - n^2),  y = 2dmn,  z = d(m^2 + n^2) といった解があります。 また、一つのピタゴラス数から次々に別のピタゴラス数を生成し、それで全部が尽くされる方法も知られています。 http://mathworld.wolfram.com/PythagoreanTriple.html n=1のときには、つまんない問題になります。 n=0のときには、存在しません。 n≦-3のとき、存在しないことは、すぐに考えれば分かると思います。 なので、問題なのは、n=-1,-2のときで、このとき解は無数に存在しますが、どう書き表せるのでしょうか? または、解を次々生成していく方法や、性質などはあるのでしょうか?

  • ペル方程式の自然数解と有理数解

    Dを平方数でない自然数とするとき、ペル方程式 x^2-Dy^2=1 は非自明な整数解(x,y)∈Z^2、特に自然数解(x,y)∈N^2を持つことは有名な事実です。Dirichlet原理(無理数の整数周期性の非存在)を用いた抽象論的証明や、二次無理数の(正則)連分数展開の周期性を用いた構成的証明が知られていると思いますが、非自明な有理数解でよいのなら、 (x,y)=((D+n^2)/(D-n^2),2n/(D-n^2))が確かに解を与えることは直ちにわかります。必要というわけではないですが、n^2<D<(n+1)^2としておきます。 もちろん(D+n^2)/(D-n^2)と2n/(D-n^2)が自然数になるようなD、たとえば、D=2,3,5,6,8,10,…などは非自明な自然数解の存在も同時にわかるわけですが、たとえばD=7などでは自然数解の存在まではこれだけではわかりません。そこで、有理数解の存在を既知とした場合、それから自然数解の存在を導く証明はないのか、と考えたのですが、思いつきませんでした。もし何かよい方法があればご教授いただけませんか?

  • にゃんこ先生の自作問題、不定方程式で解を生成、ペル方程式ピタゴラス数東大入試

    にゃんこ先生といいます。次のようにゃ問題が知られています。 ペル方程式 x^2-ny^2=1 (ただし、nは平方数ではない) の整数解は、一つの解を見つければ、そっからすべての解が生成される。 http://ja.wikipedia.org/wiki/%E3%83%9A%E3%83%AB%E6%96%B9%E7%A8%8B%E5%BC%8F ピタゴラス数 a^2+b^2=c^2 の自然数解(ただし、gcd(a,b,c)=1)は、(a,b,c)=(3,4,5)からすべての解が生成される。 http://mathworld.wolfram.com/PythagoreanTriple.html 2006東大入試問題 x^2+y^2+z^2=xyz(ただし、x≦y≦z) の自然数解。 http://www.yozemi.ac.jp/nyushi/sokuho/sokuho06/tokyo/zenki/sugaku_ri/mon4.html と http://www.yozemi.ac.jp/nyushi/sokuho/sokuho06/tokyo/zenki/sugaku_ri/kai4.html 入試には解は無数あることを証明させていますが、実際にはすべての解を求めることが出来ます。 その方針は、 (1)y≦3となるものは、(x,y,z)=(3,3,3),(3,3,6) (2)(a,b,c)が解のとき、(b,c,bc-a)も解でc<bc-a (3)逆に、(a,b,c)が解のとき、(ab-c,a,b)も解。 このとき、b≧aとなるが、b=aのときは、(x,y,z)=(3,3,3),(3,3,6)のときのみ。 b>aのときは、繰り返すことでそれらに帰着される。 つまりは、(x,y,z)=(3,3,3)を出発して、 (a,b,c) → (b,c,bc-a) を考えることで、すべての解が生成されます。 ペル方程式の生成理論は分かるのですが、ピタゴラス数や2006東大入試 において、解の生成する方法はどのように考えられたのでしょうか?